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4 1. INTRODUCTION

Future tactical aircraft engine designs depend heavily on advanced materials technology to
meet thrust-to-weight and durability goals. Several types of materials currently under
development are candidates for use in these advanced engines, including intermetallic titanium
aluminides. Titanium aluminide alloys offer low density, high specific strength, and elevated
temperature capabilities. If the materials are used in major structural and rotating components,
these properties could significantly increase engine thrust-to-weight ratio.

Monolithic titanium aluminides are currently being evaluated for static components where
they offer strength and stiffness advantages at temperatures above conventional titanium alloy
capability.\Since their specific strength and stiffness are competitive with nickel allovs up to
650°C or bé\yond, use of the titanium aluminides could significantly reduce weights as compared
to nickel structures. In addition, titanium aluminides are much less susceptible to combustion
than conven!:ional titanium alloys and can therefore be considered for rotating components with
higher opergting temperatures than current titanium alloys permit.

Primar?iinﬁfations of titanium aluminides have been low ductility at low temperatures and
uncertainty about fatigue and fracture capability. Early werk associated with alloy and process
development concentrated on basic mechanical properties. The fatigue and fracture mechanics
behavior, and limitations imposed by low ductility, must be thoroughly evaluated and understood
before titanium aluminides can be given serious consideration for rotating component
applications.

This program’s objective was to provide an understanding of the fatigue and fracture
behavior of monolithic Ti;Al alloys. The program consisted of five tasks addressing:

¢ Potential improvements in the fatigue and fracture capability of the selected
alloy by optimizing forging and heat treatment conditions to provide the best
balance of strength, ductility, toughness, creep, and impact resistance. The
process optimization, conducted on the Ti-25Al-10Nb-3V-1Mo, examined
isothermal forgings above and below the beta transus. An optimum stabiliza-
tion and age cycle was developed after evaluating six temperature combina-
tion variations. Both alloys received the optimized forge/heat treat process
and basic mechanical property screening.

» Applicability of current life prediction and data analysis models to the
material. The ability of conventional fatigue and fracture analysis tools and
methods to predict the effects of a wide array of variables with these materials
is of great importance. The use of these tools was investigated in low cvcle
fatigue (LCF), high cycle fatigue (HCF), thermal mechanical fatigue (TMF),
and crack propagation testing. Variables included temperature, cycle type
(frequency/dwell), stress, strain, stress intensity, and R-ratio. The application
of hysteretic energy in a fatigue life prediction model and the hyperbolic sine
model for crack propagation was addressed.

* The effects of low ductility on fatigue and fracture properties, including
thermal mechanical fatigue capability and changes in this behavior as
temperature and ductility increase. Low temperature/low ductility presents a
particular problem from an out-of-phase TMF cycle standpoint. Notched
fatigue behavior at low temperature results in large inelastic surface strains.
The roles that these conditions play in the cyclic behavior is of critical
importance. Smooth and notched isothermal LCF and HCF testing and TMF
testing employing in-phase and out-of-phase cycle types were among those
employed to address these questions.

These objectives were met under this program.




Ii. TECHNICAL PROGRAM PLAN AND RESULTS
1. OVERVIEW AND SUMMARY OF APPROACH

The investigation was conducted as a five-task program with a 45-month technical effort
directed toward characterizing fatigue and fracture behavior of monolithic Ti;Al alloys.

Task I included a study of candidate processing/heat treatment variations to optimize
microstructure and mechanical properties for improved fatigue and damage tolerance. The
optimization plan included a direct comparison of candidate forging and heat-treatment
conditions determined under this task with results of other U.S. Air Force contracts performed
by Pratt & Whitney (P&W) Commercial Engine Business, East Hartford, Connecticut. Based on
a balance of properties and microstructural features, the optimum processing conditions for the
alloy were selected. Details and results of that study are shown in the Task I discussion.

A substantial experimental program and associated analytical effort emphasized fatigue
and fracture behavior. In Tasks II and III, fatigue crack initiation and propagation behavior were
evaluated over a range of temperatures, frequencies, and stress ratios, spanning potential service
conditions for the material including the low temperature, low ductility area. The initiation
behavior study also included waveshape effects (dwell) and spanned the high cycle fatigue tHCF)
and low cycle fatigue (LCF) regimes. The crack propagation evaluation included threshold
behavior, temperature, stress ratio, and frequency effects. Use of the hyperbolic sine model
(SINH) provided a mathematical model of the crack growth behavior over a portion of the range
of conditions evaluated. Thermal mechanical fatigue (TMF) behavior for different phase cyvcles
and stress ratios was included in Task IV. Finally, in Task V extensive metallography and
fractography was used to understand the mechanisms of initiation and propagation.

2. TASK | — PROCESS OPTIMIZATION
a. Summary

Initial development work on Tij;Al alloys under previous U.S. Air Force contracts
concentrated on obtaining an acceptabie overall balance of properties, including good elevated
temperature creep strength, and finite, although still small, low-temperature ductility. Two of the
most promising compositions are Ti-24Al-11Nb a/o and Ti-25Al-10Nb-3V-1Mo a/o.* Both of
these alloys were studied in this program although initially only one alloy, Ti-24Al-11Nb, was to
be studied.

A forging and heat treatment study was conducted using the Ti-25Al-10Nb-3V-1Mo alloy.
This evaluation consisted of a two-part study — the first part to select candidate processes, the
second part to perform screening tests. The key process elements addressed were the forging
temperature, the beta anneal cooling rate and the stabilization and age cycle. Processing details
are discussed later. The optimum Ti-25A1-10Nb-3V-1Mo process was applied to the Ti-24Al-
11Nb material and both alloys received preliminary characterization.

b. Technical Approach

The best process/property combination previously achieved for Ti-25A1-10Nb-3V-1 Mo was
from AFWAL-TR-82-4086, “R&D On Composition And Processing Of Titanium Aluminide
Alloys For Turbine Engines” (Reference 1). Process elements from that program are shown as
candidate in Table 1. In that program, the material was forged from cast ingot. There, it was

* All references to alloy composition are on the basis of atomic percent unless otherwise stated.




noted that while heat treatment of alpha-2 base alloys can be used to produce quite a large
variation in properties; the best ductility at low temperatures and the best creep-rupture
capability is produced by a beta solution treatment. Throughout the development of these
materials, it has also been felt that toughness, if not independent of ductility, may in fact be
positively related.

The cooling rate from the beta phase field has also been shown to be of crucial importance.
By controlling the rate to give a fine Widmanstatten structure, the best property balance is
achieved. A fine prior beta grain size was noted to be associated with longer fatigue lives as well
as good tensile ductility and that creep lives were better with an elongated (and coarser) prior
beta grain morphology. That study also indicated that the additional working introduced by
redundant ingot upset forging broke up the cast structure resulting in a much finer uniform grain
size.

In the Ti-24Al-11Nb alloy, a similar relationship between microstructure strength and
ductility was seen in “Research to Conduct an Analytical Investigation of Alloys,” AFML-TR-
78-18. There, it was observed that a rapid (12°C/sec) cooling rate results in a partially
transformed structure with a high room temperature yield strength and finite but low ductility.
Intermediate cooling rates (3.3°C/sec) result in a Widmanstatten structure with good ductility
and a strength level greater than 689.5 MPa (100 ksi). Slow cooling rates (1°C/sec) give a colony-
type structure with the associated low strength and ductility. This cooling rate-to-microstructure
relationship was also shown in “Production of Titanium Aluminide Products,” AFWAL-TR-
4050.

Based on these assumptions, wrought barstock would be isothermally forged above and
below the beta transus, a cooling rate from the beta field capable of producing a fine
Widmanstatten structure would be determined, and an effort would be made to obtain a fine
prior beta grain structure by direct stabilization from the beta forge cycle, eliminating a beta
solution cycle. The other two Ti-25A1-10Nb-3V-1Mo process variants in the table show the
optimized beta anneal cooling method and the results of the stabilization/age cycles from those
portions of the process study. From the screening study on these three variants, the best process
(Candidate 4) was selected and applied to pancake forgings of both alloys. The cyclic
characterization in Tasks II through V was divided to allocate 75 percent of the testing effort tc
Ti-24Al-11Nb and 25 percent to Ti-25Al-10Nb-3V-1Mo.

(1) Material

The Ti-25A1-10Nb-3V-1Mo material was obtained as 15.6 cm (6.125 in.) diameter barstock.
The “as-received” microstructure is shown in Figure 1. This material had been triple vacuum
melted and cast into a 14-inch diameter ingot at Timet's Henderson, Nevada facility and then
converted to barstock at their Toronto, Ohio mill. The conversion process entails rotary forging
into an octagonal cross-section high in the alpha-beta temperature range. The reduced barstock
was subsequently lathe turned into round barstock. The 430 kg (950 lb) ingot yielded 234 kg
(516 1b) of finished barstock. The Ti-24Al-11Nb was produced in a similar manner, however,
reduction was to 20 cm (8.5 in.) diameter. The Ti-24Al-11Nb barstock microstructure is shown in
Figure 2.

Alloy chemistry is shown in Tables 2 and 3. A beta transus determination was conducted on
the Ti-25A1-10Nb-3V-1Mo upon receipt. The study consisted of microstructural review (Figures
3 and 4) of specimens water quenched from ascending temperatures starting at 1038°C (1900°F).
The beta transus was found to be between 1099°C (2010°F) and 1104°C (2020°F).

The approximate beta transus for the Ti-24Al-i1Nb was known since numerous Timed
heats witk. similar elemental analysis have been found to poscess beta transus between 1121°C
(2050°F) and 1132°C (2070°F).




(2) Process Application/Selection Procedure

Initially, a full-sized Ti-25A1-10Nb-3V-1Mo pancake was isothermally alpha-2 beta forged.
The forging details are shown in Table 4. This pancake was cut in half and one-half of the
forging was given the “Candidate 3" heat treatment. That heat treatment is described in detail in
Table 5. The remaining half was set aside to provide material for the cooling rate and
stabilization cycle study described in Figure 5, and for the Candidate 2 variant once the optimum
parameters had been determined.

The cooling rate study was conducted using the “tower” fixture and strip specimen shown
in Figure 6. The tower fixture was fabricated from a titanium alloy with similar thermal
conductivity. A strip of the subject alloy was inserted into the slot in the fixture, thermocouples
were placed into the indicated holes, and the assembly was wired together. The thermocouples
were routed to a strip recorder. The tower assembly was placed in a furnace and heated to the
beta forging temperature, 1150°C (2100°F), and soaked for 30 minutes. The assembly was then
withdrawn from the furnace and allowed to air cool. The resultant microstructures and cooling
rate curves are shown in Figures 7 through 10.

The cooling rate that produced the desired fine acicular alpha-2 plus beta Widmanstatten
microstructure was found to exist between 158° and 129°C (285° to 233°F) per minute. Based
upon the comparative section thermal masses, it was determined that an optimum cooling rate
for the 28.6 mm (1.125 in.)} thick pancakes could be obtained with an air cool. A fan air cool was
employed for the Ti-24Al-11Nb forgings since they were produced at a slightly greater thickness
for specimen accommodation.

(3) Forgings

All of the pancake forgings were produced in a 2.67-MN (300-ton} press with open dies
under true isothermal conditions. A Ti-24Al-11Nb pancake forging typical of both
Ti-25A1-10Nb-3V-1Mo and Ti-24Al-11Nb is shown in Figure 11. No cracking occurred during
the forging of any of the pancakes; however, pancakes did crack from residual stresses during
sectioning by both wire EDM (Figures 12 and 13) and abrasive cut-off wheel machining (Figure
14). The pancakes were in the as-forged condition. A cross-section showing the macrostructure of
a beta forged and stabilization/age Ti-25A1-10Nb-3V-1Mo pancake (Candidate 4) is shown in
Figure 15. The presence of extremely elongated prior beta grains in the radial direction of the
pancake revealed the flow pattern resulting from forging. Since no subsequent beta solution was
applied, this structure was not allowed to recrystallize and grow to the equiaxed prior beta
structure seen in Figure 16 from the Candidate 3 forging (beta annealed after alpha-2/beta
forging). Grain size and comments on the microstructures are given in Tables 6 and 7. The degree
of upset for the Ti-24Al-11Nb forgings was 72 percent; the upset for the Ti-25A1-10Nb-3V-1Mo
forgings was 86 percent.

The fully heat treated microstructures are shown in Figures 17 and 18. Typical features for
both Ti-24Al-11Nb and Ti-25A1-10Nb-3V-1Mo microstructures are the fine basket weave of
white acicular alpha-2 platelets and the dark beta phase preferentially aligned along prior beta
grain houndaries with grain boundary alpha-2 phase present and some larger alpha-2 platelets
oriented normal to the viewing plane.

(4) Stabilization/Age Study

A study was conducted to identify en optimum stabilization and age cycle combination.
Based on P& W experience with alpha-2 aluminides and current practice with conventional beta-
processed titanium alloys, a matrix of two solution temperatures was established. Advantage
would be taken of the ohserved correlation of hardness and room-temperature yield strength in




identifying which cycle combination provided optimum strength. Ti-25A1-10Nb-3V-1Mo test
bars were fabricated and 816°C (1500°F) and 871°C (1600°F) 30-minute stabilization cycles were
applied. Eight-hour age cycles were subsequently applied at 47°C (100°F) intervals between
593°C (1100°F) and 704°C (1300°F). A microstructural review augmented with a microhardness
survey was then conducted. The results of this study were inconclusive and consequently pieces
of material large enough to provide limited numbers of tensile specimens were subjected to the
same thermal process matrix. Room temperature strength and ductility test results for each
stabilization/age combination are reported in Table 8 and shown in comparison in Figures 19 and
20. The 816°C (1500°F) 30-minute stabilization — 593°C (1100°F) 8-hour age cycle appears to
offer the best combination of room temperature strength and ductility. Post-creep tensile
stability was determined by exposure of tensile specimens to 379 MPa (55 ksi), 650°C (1200°F)
creep conditions to 0.5 creep and then down-loaded to 138 MPa (20 ksi) and given a further 100
hours of exposure. Specimens were then removed from test and room temperature strength and
ductility were rechecked. The post-creep tensile results are shown in Table 9. Post-creep ductility
at room temperature decreased for all of the stabilization cycles evaluated. Post-creep results are
shown graphically in Figures 21 and 22.

(5) Screening Test Results

The various thermal cycle combinations were screened for tensile strength, ductility, and
suspended creep/tensile stability. Based upon these results, an 815°C (1500°F)/30-minute
stabilization -— 593°C (1100°F)/8-hour age cycle applied to beta forged material appeared to
provide an optimum combination of strength and ductility. This eliminated the need to screen a
“Candidate 2", since applying the indicated stabilization/age cycle to the alpha-2/beta forged
material would have been a duplication of the heat treatment screened in the “Candidate 3”
testing. The beta forged material with the same stabilization/age cycle exhibited similar strength
and greater ductility. Screening test results for “Candidate 3" are shown in Tables 10 through 13.

Tensile ductility data obtained are similar to, and in some cases higher than, those observed
in the previous Air Force Wright Aeronautical Laboratories (AFWAL) program (Reference 1)
from which the Candidate 3 heat treatment was developed. Room temperature Charpy notched
impact strength was winimal (less than 2.0 joules). Both 0.2 percent yield strength and ultimate
strength were 1) to 20 percent lower than expected (probably due to a somewhat coarser
Widmanstatten structure).

Fracture toughness was similar to that previously observed, while creep capability was poor
compared to previous results (Reference 1) reflecting the reduced strength. Creep tests were
conducted at 379 MPa (55 ksi) to provide a direct comparison with the work done in the previous
program,

Strength and ductility versus temperature for the optimized Ti-25Al-10Nb-3V-1Mo alloy,
“Candidate 4" and the Ti-24Al-11Nb alloy (Candidate 1) is reported in Tables 14 and 15 and
Figures 23 through 26. The strength for the Ti-24Al-11Nb material was lower than the Ti-25Al-
10Nb-3V-1Mo alloy as expected. Ductility for the Ti-24Al-11Nb was only slightly lower than the
Ti-25A1-10NY 5V-1Mo. Since the alloys were both beta forged from wrought barstock with
similar upsets and subsequently, received identical heat treatments, the effects of composition on
mechanical properties can be clearly seen. The higher aluminum content and the increased
amount of beta stabilizers in the Ti-25Al-10Nb-3V-1Mo alloy results in superior strength.

A comparison of notched Charpy impact strength for the two alloys is shown in Figure 27.
Although similar up to 205°C (400°F), above that temperature the Ti-24Al-11Nb material has a
clear advantage. Resulcs are listed in Tables 16 and 17.

Fracture toughness versus temperature for the Ti-25A1-10Nb-3V-1Mo Candidate 4 alloy is
shown in Figure 28. Since the macrostructure resulting from the absence of a beta anneal cycle




appears highly directional, supplemental tests to look at the three extremes in macrostructure
versus crack propagation direction were conducted. The orientations are described in Figure 29.
No difference was seen at the condition examined. Tabulated results are shown in Table 18.

Fracture toughness results for the Ti-24Al-11Nb are shown in Table 19 and Figure 30.
Since the Ti-24Al-11Nb macrostructure was similar to the Ti-25A1-10Nb-3V-1Mo alloy,
orientation was not addressed. Creep behavior is shown in Tables 20 and 21 for the two alloys.
Rupture, Figure 31, and 0.5 percent creep, Figure 32, for the Ti-24Al-11Nb are plotted as a
function of stress and temperature. Figures 33 and 34 show the Ti-25Al-10Nb-3V-1Mo results
plotted. Dynamic elastic modules versus temperature was determined for both alloys and is
shown in Figure 35 and Table 22.

¢. Discussion of Results

The limited determination of mechanical properties obtained by the screening tests
provided a good overview of the alloys’ monotonic capabilities. In addition, insight into the
relationship between macrostructure, microstructure, environmental effects, and failure modes
were gained.

Notched Charpy impact strength is less than 5 joules below 427°C for the Ti-25Ai-10Nb-
3V-1Mo alpha-2/beta forged/solutioned (equiaxed) structure. This is also true for the beta
processed Ti-25A1-10Nb-3V-1Mo with the markedly different prior beta grain morphology seen
in Figure 36; in both cases, microstructure is similar. Prior beta grain structure appears to have
no effect on impact strength.

There is a significant strength advantage for the Ti-25A1-10Nb-3V-1Mo over Ti-24Al-11Nb
at room temperature but there is minimal difference in impact strength. At 427°C, the high
ductility of Ti-24Al-11Nb compared to Ti-25A1-10Nb-3V-1Mo is manifested in a large impact
advantage over Ti-25Al1-10Nb-3V-1Mo. Fracture toughness also appears to be independent of
prior beta grain morphology as seen in the Candidate 4 testing where extremes in orientation
were tested showing little difference. The Candidate 3 structure undergoes the transition in
fracture mode between 316° and 650°C and is shown in Figure 37. The 650°C test specimen
exhibiting necking was not plane strain, and the data were not used.

The alpha-2/beta forged material has an advantage in toughness over the beta forging at
low and elevated temperatures. Its yield strength is higher and its ductility lower versus the beta
material. Strength is not the determining factor since the Ti-24Al-11Nb is significantly weaker
yet has better toughness with less room temperature ductility than the Ti-25Al1-10Nb-3V-1Mo
beta forged material.

The Ti-24Al-11Nb and Ti-25A1-10Nb-3V-1Mo creep and rupture curves are a result of
response surface models. They predict creep and rupture life based on the test stress and
temperature (both independent variables) as opposed to Larson-Miller which confuses the
dependent variable, life, with an independent variable, temperature to predict life. The response
surface models have been shown to better predict creep life than Larson-Miller for these and
similar titanium alloys as well as Ni-base alloys due to a smaller standard error for the model
(Reference 2). The standard error for ne Ni-base alloy (PWA 1422) was reduced by more than a
factor of two through the use of response surface modeling.

Fracture surfaces at various temperatures are shown for the beta forged structure in Figures
38 through 42. A common occurrence with both alloys is the flaking of material from fracture
surfaces. In Figure 39, pieces of this material were picked from a fracture and examined to
determine if they were individual grains. This was done with the beta and alpha-2/beta forged
material and in hoth cases, the results indicate transgranular cracks around muitiple grains of




material with no apparent predisposition to grain boundary cracking. This condition leaves a
furrowed appearance on some fractures. This is seen in Figure 40. Figures 41 and 42 show details
of Ti-24Al-11Nb toughness fractures, a mixture of ductile tearing and quasi-cleavage.

Tensile results for both alloys show a decrease in yield and ultimate strength between room
temperature and 204°C. Yield strength continues to drop after that. But, both alloys exhibit a
pronounced peak in ultimate strength and ductility at 427°C. At room temperature, fractures
appear brittle (Figure 43) but begin to show a more ductile appearance at 204°C. Secondary
cracking along gage section sides occurs above room temperature (Figures 44 and 45) and is
extensive at 427°C. Internal cracks have also been detected, but no repeated association with
prior beta grain boundaries has been noted. Creep specimens experience extensive secondary
cracking and although cracks appear to be associated with circumferential grind marks. similar
cracks form on LCF specimens highly polished in the axial direction.

As expected, the higher strength of the Ti-25Al-10Nb-3V-1Mo resulted in a distinct
advantage in creep/stress rupture over the Ti-24Al-11Nb. Both alloys exhibit oxygen embrittle-
ment indicating the need for protective coatings. Sectioned creep specimens are shown in Figures
46 and 47 and exhibit a distinct layer of oxygen embrittlement and secondary cracks as in tensile
tests (where thermal exposure is minimal). The hardness of the layer has been measured and is
HV 856 compared to HV 393.3 for the unembrittled material.

3. TASK Il — FATIGUE CRACK INITIATION
a. Summary

The program was structured to provide an understanding of the more important variables
that will affect the general fatigue crack initiation and propagation of advanced titanium
aluminide alloys. The variables that were addressed include the effects of temperature,
frequency, stress-ratio, waveshape, and stress concentration in both the LCF and HCF regimes.
Additional testing involved the effects of hot salt stress corrosion (HSSC), protective coatings,
and the effects of prestressing.

b. Technical Approach

Smooth and notched HCF and LCF testing was conducted at three temperatures chosen to
span expected service temperatures that may result in fatigue crack initiation in engine
compounents. These temperatures range from ambient conditions at engine startup to above
650°C. The three temperatures shown in the tables (26°, 427°, and 650°C) cover this range and
were chosen to allow any temperature-dependent {racture mechanism transitions to occur.

As shown in Figure 48, smooth LCF testing used the specimen that has a round cross-
sectional area, a cylindrical gage section and a K, of 1.0. Specimen testing was done in either an
axial strain control-strain feedback or load (stress) controlled mode as noted in the tables of
results. Specimen axial strains were measured and controlled by means of a dual proximity probe
extensometer system mechanically attached to the gage section. Test loads were monitored and
controlled by commercial tension-compression flat load cells. Strain, as sensed by the
extensometer system, was recorded on the X-axis of an X-Y recorder, and load (sensed by the
load cell) was recorded on the Y-axis; thus providing material hysteresis loops as desired during
the cyclic life of the specimen.

Both fully reversed strain cycling to eliminate mean stress and mean strain effects, and an
all tensile strain cycle demonstrating strain and stress ratio effects were employed and are
described in Figures 49 and 50. Strain ranges were selected to produce S-N curves over a range of
1,000 to 50,000 cycles. These tests were conducted at a frequency of 0.17 Hz (10 cpm) with a
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sawtooth waveform. An additional waveform possessing a 120-second peak strain hold time
(Figure 51) was also employed to quantify creep and stress relaxation behavior of the alloy.

The LCF notch tests used the double-edge notch specimen, shown in Figure 52, which has a
rectangular cross-sectional area and a K, of 2.18 on the two opposite notches. The specimens
were load cycled to failure with periodic inspections to determine life to detectable surface
cracking. Three inspection methods were used for crack detection: visual inspections using high
intensity light and a traveling microscope, fluorescent penetrant inspection (FPI), and acetate
film replication (used for a permanent record of relevant indications).

The HCF cracking in compressor components is generally due to high frequency resonant
excitation of the structure. Smooth, K, = 1, tests were runat R = 0.0 aswellas R = ~1.0 and at a
cyclic frequency of 30 Hz. The S-N curves were established for both conditions. The maximum
HCEF stress level was chosen to provide a comparison with the lowest LCF level for frequency
effect determination. The effects of coating and prestressing were also examined. The smooth
and notched HCF specimens used are shown in Figures 53 and 54.

c. Results

Isothermal strain controlled LCF test results for Ti-24Al-11Nb at room temperature are
shown in Table 23 and plotted in Figure 55 for total strain range versus life. The plot shows a
comparison of the R =0 versus R = —1.0 and shows lower life per expectation for the higher
mean stress (R = 0) test condition. Included in the data are two tests run with American Society
for Testing and Materials (ASTM) sea salt applied to the gage sections. These were run to
augment the HSSC testing being conducted with notched LCF and TMF specimens. The tests
were run without the 650°C pre-exposure given to room temperature notched LCF tests where a
marked life debit was seen. The tests were conducted to determine if the salt exposure alone
would lead to a debit in fatigue life.

Results from Ti-24Al-11Nb tests conducted at 427°C are listed in Table 24 and are plotted
in Figure 56. The plot shows little effect due to strain ratio compared to room temperature
results. Mean stress differences between cycle type are smaller than those seen at room
temperature, hence the smaller life difference. The curves were drawn for each R separately so
that later temperature and alloy comparisons could be made with data deleted for clarity. This
shows curves to cross in some cases due to the decrease in R effects at higher strains and data
scatter. Since mean stress decreases with increasing strain range for the all-tensile strain cycle,
the mean stress debit is most prominent at the lower strain levels. At the higher strains, the lives
for the two cycle types converge.

Also shown is the effect of a 120-second peak strain dwell cycle where a life penalty is seen.
Minimal creep at this temperature resuits in limited stress relaxation. The 650°C results are
shown in Table 25 and plotted in Figure 57. The 120-second dwell cycle has allowed the initially
positive mean stress associated with the R = 0 cycle to stress relax to a negative mean stress
resulting in higher life than the nondwell cycle.

Results for strain control testing of Ti-25A1-10Nb-3V-1Mo are shown in Table 26 for room
temperature, 427°C, and 650°C.

The data are plotted in Figure 58 for room temperature comparing stress ratios. The fully
reversed strain cycle exhibits higher life. Thread failures were a problem at this condition and an
increase to the next standard thread size was made for subsequent tests. Results for strain
control testing of Ti-25A1-10Nb-3V-1Mo are shown at 427°C for R = -1 and R = 0 in Figure 59.
Again, a mean stress effect appears as in the 650°C results shown in Figure 60.




Figures 61 through 63 compare the two alloys for R = 0 at room temperature, 427°C, and
650°C respectively. The comparisons are shown with the least squares fit mean lines only; the
data points (shown in the previous figures) have been deleted for clarity. The apparent reversal
at 427°C, R = 0 is probably due an artifact of data variability. The limited number of tests
precludes resolution of small differences and behavior is probably quite similar at this condition.
The curve fit parameters for the regressions are shown in Table 27. The same comparisons are
drawn for the fully reversed (R = —1) cycle in Figures 64 through 66.

(1) Hysteretic Energy Damage Modeling

In an attempt to further consolidate LCF life, an alternative method of characterizing cyclic
damage was employed. In this approach, the damage occurring in the cycle is assumed to be
related to the amount of energy dissipated as the material undergoes hysteresis. The energy in a
particular hysteresis loop may be approximated by the product of the tensile portion of the cyclic
stress range and the inelastic strain range:

AW = (o)(A¢)

where AW is the hysteretic energy damage parameter, o, is the tensile portion of the cyclic stress
range, and Ag, is the inelastic strain range. The relationship is independent of strain ratio. The
damage parameter is then assumed to be related tc LCF life by the equation:

N, = A(AW)p?

where A and B are regressed constants.

The relationship was calculated from the hysteresis loops obtained at 50 percent of the life
for each test.

Inelastic strain versus cyclic stress range for Ti-25Al1-10Nb-3V-1Mo is shown in Figures 67
through 69 for the three test temperatures, and Figures 70 through 72 show the same relationship
for Ti-24A1-11Nb. These plots provided the inelastic strains used in the hysteretic energy
calculations. Hysteretic energy versus life plots pooling the three test temperatures and two
strain ratios are shown in Figure 73 for Ti-24Al-11Nb and Figure 74 for Ti-25Al-10Nb-3V-1Mo.
The results for the two alloys are pooled in Figure 75. Fit parameters for the regressions are
shown in Table 28. The actual lives versus the predicted lives for both alloys are shown in
Figure 76 and individually for each alloy in Figures 77 and 78.

(2) Notched LCF Testing

The effects of stress and temperature on notched fatigue crack initiatior. were investigated
in testing conducted with both alloys at room temperature, 427°C, and 650°C. In addition to the
baseline testing, several other areas of interest were studied.

Notched LCF results for Ti-25A1-10Nb-3V-1Mo are shown in Table 29 and Figure 79. Life
at 427°C is similar to room temperature life. Life at 650°C is much lower, consistent with alloy
strength versus temperature. Usually, other than smooth-area fracture mechanics limitations,
the stress concentration areas are of most concern from a fatigue and fracture life standpoint.
Notch areas in low ductility materials are usually limited in the amount of inelastic deformation
that can be tolerated, which limits even the nominal (smooth area) stresses that can be applied.
Most of the plastic deformation occurs on the initial service cycle; subsequent cycles are usuaily
nearly elastic, even in the most severe stress concentrations. Local overstressing was evaluated




using an overstress cycle, performed at 427°C where the material ductility is higher and can
withstand more plastic deformation without damage. This method was expected to result in
deep-set compressive residual stresses at the root of the notch. The overstress cycle has been
successfully used to enhance crack growth life behavior when applied by sleeve coldworking
(same local stress-strain effect) and is currently in use for F100 engine Ti-6Al-2Sn-4Zr-6Mo
disks, applied as a cryogenic overspeed spin cycle.

Two supplemental tests employing a single overstress cycle at 517 MPa and 427°C were
conducted. The concentrated surface stress was 1127 MPa. Two overload cycles, one at a 0.17 Hz
ramp rate with a 60-second dwell at peak stress and the other without the dwell, were tried. At
this temperature, ductility is a maximum, however, since an LCF benefit was not realized, the
severity of the overstress cycle may have been insufficient to produce the desired effect.

Elevated temperature tests exhibit a surface layer of oxygen embrittlement. This fact and
the knowledge that aluminides suffer from hot salt stress corrosion (HSSC) at least as severely as
conventional titanium alloys indicate the need to investigate the use of protective coatings.
Consequently, testing was conducted with both alloys in coated and uncoated conditions to
investigate the effects of high-temperature oxidation and resistance to HSSC.

Ti-25A1-10Nb-3V-1Mo tests were conducted at 26° and 427°C with a TiN coating applied
by physical vapor depc.ition. Its ductility was expected to be high at 427°C, close to its maximum
service temperature, minimizing any coating associated life effect. However, a debit was seen.
The TiN coated life was not further debited by HSSC. Tests were run with and without HSSC
and were preceded by a 1-hour, 650°C thermal exposure cycle before testing. Results are shown in
Figure 80.

Notched LCF results for Ti-24Al-11Nb are listed in Table 30 showing estimated life to 0.8
mm surface crack lengtk and failure. Figure 81 shows the effects of temperature. Least squares fit
regressed mean lines are shown for each temperature. Lives at room temperature and 427°C are
similar; however, a significant drop in life is seen above 650°C.

The effects of mechanically introduced compressive residual stresses appear negligible even
though the overstress cycle was increased to 620.6 MPa for five cycles at 427°C based on the Ti-
25A1-10Nb-3V-1Mo resuits. A group of specimens was coated with an alumina forming
aluminum slurry coating. Alumina coatings have been proposed (Reference 3) for use with
titanium and are the object of study by various laboratory groups at Pratt & Whitney. The
coating can be applied by spray techniques and is appropriate for use in applications requiring
the coating of large areas such as metal matrix composite sheet.

The coating application involved a 2-hour diffusion cycle at 760°C. Since the temperature is
higher than the alloy’s age temperature (650°C), tests on uncoated specimens that had received
the thermal cycle alone were run in addition to coated specimens. The results seen in Figure 82
show a life penalty for both the coated material and the material with the diffusion cycle alone.

The HSSC results from the Ti-25A1-10Nb-3V-1Mo work were augmented with further
testing on Ti-24Al-11Nb. The HSSC effects were evaluated at room temperature (with the
1-hour 650°C pre-exposure cycle) and in testing at 650°C. Both conditions showed greatly
reduced life. Two alumina coated specimens received an applicetion of the salt solution and pre-
exposure cycle and were subsequently tested at room temperature. Coated LCF life was further
debited by HSSC. Life was degraded as severely as uncoated HSSC results. Results are shown in
Table 31 and Figure 83.
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(3) High Cycle Fatigue (HCF) Testing

High cycle fatigue (HCF) in compressor components is generally due to high frequency
resonant excitation of the structure. Primary HCF testing was conducted at two temperatures:
25°C where ductility is at a minimum and strength is highest, and 650°C where the reverse is
true. Smooth tests were run at R = —1.0 and R = 0.05 as well as at a cyclic frequency of 30 Hz.
The S-N curves were established for both conditions. The higher HCF stress levels were chosen
to provide a direct comparison with the lowest LCF levels for a frequency effect determination.
Supplementary tests evaluated an additional temperature (427°C) and the effects of warm
prestressing employing the same technique used in the notched LCF Ti-24Al-11Nb testing. In
addition, the alumina forming coating was evaluated with Ti-24Al-11Nb smooth tests.

Smooth axial HCF results for Ti-24Al-11Nb testing at room temperature and 650°C are
shown in Table 32. Notched results are shown in Table 33. The effects of temperature for smooth
R = —1.0 testing is shown in Figure 84 where little difference is seen. A similar comparison for
R = 0.05 is shown in Figure 85 where a significant life debit is seen for 650°C. Figure 86 shows
notched results for R = 0.05 as a function of temperature. Insufficient data at 427°C negated the
ability to provide a regressed mean life curve as was done in all other cases. The 427°C curve is
estimated. The effect on HCF life resulting from the alumina coating evaluated in notched LCF
testing was examined at room temperature and is shown in Figure 87. A large life penalty is seen
at the relatively high test stress. The 620.6 MPa five cycle/0.17 Hz prestress cycle (conducted at
427°C) that was used in LCF testing was also tried in HCF. The zesults, shown in Figure 88,
indicate a significant improvement in the notched HCF life resulting from the overstress cycle.

The HCF results for Ti-25A1-10Nb-3V-1Mo in Table 34 show notched and smooth data at
room temperature and 650°C. The effects of temperature are shown for R = —1 smooth testing in
Figure 89. A temperature comparison for the notched data is shown in Figure 90. Less effect
exists than that noted in Ti-24Al-11NDb testing.

The two alloys are compared in Figure 91 at 25°C where a large life advantage is present for
the stronger alloy. Little difference exists for the notched alloy comparison in Figure 92.
Comparisons are also drawn at 650°C for smooth and notched results in Figures 93 and 94.

Regression results for ten million cycle run-out fatigue strength are shown in Table 35.
Mean life curve regression fit indicators are shown in Table 36.

d. Discussion of Resuits
(1) Smooth Controlled Strain Low Cycle Fatigue

Strain ratio comparisons showed that life was dependent upon mean stress and inelastic
strain range consistent with conventional titanium alloys. Alloy comparisons showed the
stronger Ti-25A1-10Nbh-3V-1Mo to possess a life advantage in almost all cases. Initiation,
5 percent stress range drop equated to a 0.8 mm surface crack, was obtained by a strip chart on
load and indicated generally negligible life between initiation and failure. The expectation that
limited room temperature ductility would be accompanied by poor controlled strain LCF
behavior at room temperature should be examined. Figure 95 shows a hysteresis loop from a
room temperature test exhibiting significant inelastic strain contrary to the perception that
aluminides are essentially “elastic” materials. The Ti-24Al-11NDb lives at 1 percent strain are
scattered around 10,000 cycles for room temperature as weli as 427°C where ductility is at a
maximum. This is consistent with notched LCF results. Examination of the Ramburg Osgood (50
percent life) relationships for the two temperatures shows less inelastic strain for a given cyclic
stress range at room temperature versus 427°C (26°C yield strength is much higher than 427°C).
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This characteristic results in comparable hysteretic energy for the strain cycle at either
temperature. The fully reversed cycle at 0.8 percent strain is similar and the same appears true
for Ti-25A1-10Nb-3V-1Mo at 1 percent and 1.5 percent. Another observation, pertinent to
constitutive modeling, is the propensity for cyclic hardening and stress relaxation in strain
control testing exhibited by both alloys. This is seen graphically in the 427°C fully reversed 1
percent strain cycle shown in Figure 96 where a 36 percent increase in cyclic stress range was
accompanied by a 10X decrease in inelastic strain between the initial cycle and 50 percent life. In
Figure 97, a 0.8 percent R = 0.0 cycle shows similar changes plus a reduction in mean stress. The
mean stress drop is also seen in 26°C tests where a creep component is not present and would
seem to be achieved by way of a stress range increase alone, with proportionately more
compressive than tensile component increase. Peak strain dwell tests conducted at 427° and
650°C both demonstrate significant creep components; consequently, the mean stress drop noted
in 427°C tests may be attributed to the combined effects of stress relaxation and cyclic
hardening. At 650°C, stress relaxation due to creep resulted in R = 0.0 peak strain dwell tests
outlasting similar non-dwell tests by relaxation to a negative mean stress. Several other
observations regarding 650°C results are of note. Significant cyclic hardening was still present at
650°C. At this temperature, a 30 percent increase in cyclic stress range was not uncommon.

Tensile stability has been a point of concern with aluminides. Post-creep tensile tests
indicated extreme loss of room temperature ductility resulting from exposure to stress and
temperature. Still, lives comparable in some cases to those observed at lower temperatures were
seen. This may be because much more ductility exists at 650°C than 26°C. An expectation might
be that an out-of-phase TMF cycle would demonstrate the effects of tensile instability on fatigue
behavior since thermal exposure is experienced in combination with excursions to maximum
strain at near room temperature. Test results indicated otherwise, and are discussed in Task IV.

Environmental effects in the form of oxygen embrittlement were prominent in creep
specimens tested at 538°C but were not observed in LCF specimens with more than 250 hours
exposure at 427°C. An examination of a 650°C LCF test specimen with more than 400 hours
exposure appears in Figures 97 through 99. The su:face is heavily oxidized. Cracks in the oxide
scale are visible on the gage surface as are the polishing marks perpendicular to the scale cracks
demonstrating the lack of association between the two. The degree of oxide spalling is obvious
and material has clearly exfoliated from the surface in some areas (Figure 98). The structure of
the oxide scale is shown in cross-section in Figure 99 where multiple breeches in the scale are
visible, some with cracks extending through the embrittled layer into the specimen. The
mechanism by which exfoliation occurs can be seen as cracks forming beneath the oxides in the
embrittled layer and run parallel to the surface. Relative microhardness of the layer is shown in
Figure 100. The X-ray diffraction phase analysis showed the scale to be composed of rutile,
titanium dioxide. Niobium aluminum spinel and niobium alloyed rutile were also suggested. The
mechanism of crack formation in the oxide is important. For an outward growing scale such as
niobium oxide, a crack in the scale is self healing. As cracks form, oxide scale continues to build
outward on the surface and the crack is filled and closes with rutile. However, the formation of
scale is by inward diffusion of oxygen into the substrate as opposed to outward migration of alloy
constituents. Consequently, as cracks form in the scale through straining, they tend to propagate
into the metal. An oxidation-fatigue interaction occurs as high plastic strains are ccntinually
experienced while the scale builds from thermal exposure.

(2) Notched Low Cycle Fatigue (LCF)

Notched LCF results showed generally the same temperature effect trends and alloy
ranking seen in strain control testing. Remaining life from initiation to failure appears more
significant tor stress controlled notch versus smooth strain control conditions as seer. in Figures
101 and 102. Representative samples showing critical crack depths for the three temperatures
evaluated are shown in Figures 103 and 104 and snow a considerable fraction of the cross-

12




sectional area cracks before failure. In addition, a/2c aspect ratio can be seen to be approximately
0.5. The effects of prestressing were not evident in total life; however, some benefit does appear
in crack growth. A comparison of remaining life for prestressed versus baseline is shown in
Figure 105.

Environmental effects were also evident in notched testing. In Figure 106, the early stages
of formation and cracking of the oxide scale can be seen in addition to the fractographic
appearance of the embrittled layer along the edge of the failed specimen. Figure 107 shows the
notch opposite the fatigued notch where overstress failure has occurred and is a graphic
indication of the brittle nature of the oxygen diffused surface layer (0.013 mm deep in this case).
The results of the coating experiments appeared to be partly successful in that the alumina
former coated specimens tested at 650°C did not exhibit signs of oxygen diffusion beneath the
coating (Figure 108). This statement cannot be made for the TiN coating since visible oxygen
diffusion does not occur at the 427°C test temperature. The alumina former possessed the
disadvantage of the 760°C diffusion cycle which is above the age cycle temperature. The TiN
coating possesses a temperature limitation that the other coating does not. The TiN coating
nodules appear to be detrimental from a fatigue initiation standpoint (Figure 109); however,
application process modifications could mitigate this problem. The TiN did seem to become
somewhat ductile at 427°C since the 25°C test exhibited a much greater life debit compared to
baseline data. Hot salt stress corrosion still must be the final criteria of efficacy if the alloys are
to be used in applications where salt might be encountered. The alumina former life was debited
by the addition of HSSC. The TiN coated life was not decreased by the exposure to HSSC.
Uncoated Ti-25A1-10Nb-3V-1Mo HSSC resistance was not tested so no baseline exists to
provide a comparison. Further testing is needed in this area since the lower test temperature
(427° versus 650°C) and lack of baseline precludes more accurate observations.

(3) High Cycle Fatigue (HCF)

Temperature effects were best resolved with smooth specimens in (R = 0.05) tests where
the increase from 25° to 650°C was accompanied by a large decrease in HCF capability. Little
temperature effect was seen with R = — 1.0 tests since this cycle results in zero mean stress.
Fatigue life is a function of mean stress and inelastic strain range. With no mean stress
component, inelastic strain range (relatively small at the lower HCF stresses) is the chief factor
in determining life. The difference in temperature effect for the two stress ratios indicates a
significant stress ratio effect and agrees with LCF results. In the case of notched testing, the life
effect due to temperature was less apparent than with smooth tests. The high plastic strains and
the tendency for stress relaxation would allow notch conditions to relax to between the R = 0.05
cycle and the fully reversed cycle. As in smooth R = —1.0 tests, less temperature effect would
result. The LCF tendency for grouping of 25°C with 427°C results and the debit seen at 650°C
was detectable in HCF results but to a lesser extent. A comparison of HCF and LCF results
indicated no life debit associated with higher test frequencies. The comparisons were drawn at
R = 0.05 for notched tests at all three test temperatures and smooth tests at R = —1.0, 25°C,
where some of the smooth L.CF tests were run in stress control.

The effects of prestressing were evaluated at 427°C and a significant life benefit was found.
The tests were conducted at low stresses. The LCF evaluations were conducted at high stresses.
This would seem to be the key to why LCF initiation results were not impressive. The HCF
coating evaluation agreed with the results obtained in notched LCF testing; a significant life
penalty exists at 25°C. These results should be reconciled with the fact that engine
representative stresses were not used and would be considerably lower. The true performance of a
coating should be evaluated in reference to the run-out stress and exam.ned from a Goodman
diagram standpoint.

An effort was made to model the HCF data based on tensile hysteretic energy as proposed
by Ostergren (Reference 4) with simplifications to represent the inelastic strain range (Reference
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5). However, coefficients of correlation and standard estimates of error were poor. Hence, stress
was used as the correlative parameter for regressions. The reason for the difficulties lie in not
accounting for cyclic hardening in the technique used for estimating inelastic strain. The
pronounced cyclic instability observed in controlled strain LCF testing must be accounted for in
life modeling.

4. TASK Il — FATIGUE CRACK PROPAGATION
a. Summary

Isothermal fatigue crack growth rate testing covered the same temperature range as in
fatigue testing. The variables included temperature, stress ratio, dwell effect, frequency, and
orientation. Crack growth rate tests, plus tests to establish threshold crack growth stress
intensity were run. Several conditions were examined to investigate the crack growth behavior of
cracks in the near-threshold region (da/dN = 107 m (107° in.)/cycle).

The planned threshold test method was modified to allow the use of the compact tension
test specimen and the provision for some of these tests to be conducted by Dr. Gary Salivar at
Florida Atlantic University. The test technique, load shedding by “K” control, used the compact
type, CT, specimen rather than the planned iterative bend specimen technique and provided
crack closure data not afforded by the bend method. Experimental fatigue crack growth rate data
was obtained using the CT specimen shown in Figure 110. The database was generated using the
ASTM standard CT specimen. As in fatigue testing, test temperature range was chosen to
represent the probable operating range of TijAl in engine hardware.

b. Technical Approach

Isothermal crack growth rate testing was conducted per ASTM E647. The specimen used
was the standard compact type. This type was chosen for the large amount of crack propagation
data yielded. Test specimens were precracked using procedures outlined in ASTM Section E647.
Precracking was performed at room temperature at a cyclic frequency of 20 Hz. This helped to
maintain the crack propagation perpendicular to the loading direction. Cyclic tests were
performed using isosceles triangular load waveforms. Specimen heating was provided by
resistance clamshell furnaces having windows allowing observation of crack growth at the test
temperature.

Using a traveling microscope, crack lengths were measured on both surfaces of the
specimen at the mean test load. This procedure held the specimen rigid while increasing crack tip
visibility. A high intensity light was used to provide oblique illumination to the crack and further
increase crack visibility. In general, crack length measurements were taken at increments no
larger than 0.25 mm (0.010 in.).

Monolithic Ti;Al can be treated as a homogeneous isotropic continuum with respect to
crack propagation. Combining this assumption with the deformation characteristics of Ti,Al
leads to the use of linear elastic fracture mechanics with stress intensity range (AK) as the
correlative parameter for describing fatigue crack growth rates. The use of AK is also supported
by previous testing at P&W. A fatigue crack growth rate model has been successfully developed
for a Ti;Al alloy similar to the alloys studied in this contract. That model described crack growth
rates for cast Ti,Al from 204° to 650°C (400° to 1200°F) for stress ratios of 0.1 to 0.7, and AK was
used to correlate the data.

log (da.'dN) = C, sinh (C{log (AK) + C,)) +C, 1)
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where the coefficients have been shown to be functions of test frequency (References 6 and 7),
stress ratio, and temperature (V, R, and T respectively).

C, = material constant

Cz = f2 (V, R, T)
Cs = f2 (V, R, T)
C,=f, (v, R T)

The hyperbolic sine is defined as

y = sinh (x) = e‘_—ze_'f_ (2)

and when presented on Cartesian coordinates it exhibits the overall shape of typical da/dN
versus AK plots obtained over several decades of crack growth rates.

In some gas turbine applications, crack growth data is needed at AK levels corresponding to
extremely low growth rates. The threshold stress intensity, AK,;, is defined as that AK level
where crack propagation ceases, at least for all practical purposes. The threshold stress intensity
becomes significant when a relatively small crack is subjected to a high stress, for example in a
disk bolthole, or when a component can accumulate a large number of cycles in a short time, such
as a compressor blade subjected to vibrational loading. To investigate fatigue crack growth rates
in the near threshold region, da/dN=10"® m/cycle, it is generally necessary to employ specialized
test techniques. This section will review the test techniques used to obtain threshold
information, and will discuss the results of that testing.

The test method used for determining AK,, is described in detail in ASTM E-647-88,
Standard Test Method for Measurement of Fatigue Crack Growth Rates (Reference 8). In
general, this method consists of establishing crack propagation at a relatively high rate and then
continuously reducing the test loads to decrease the applied AK, thus reducing the crack growth
rates. The specimen used for these tests is the CT specimen described earlier. Standard stress
intensity solutions, size restrictions, and crack front curvature limitations are applicable.
Precracking procedures are the same as those employed in standard crack growth rate testing.

The test consists of applying a decreasing stress intensity to the specimen to back down the
da/dN, AK curve and approach the fatigue crack growth threshold. This is accomplished by
decreasing the test load (load shedding) as the crack extends. The test is started by cycling at a
AK and K ,, level equal to or greater than the final level used during precracking. The load
shedding can then be performed on a continuous basis under computer control. Care must be
exercised in the selection of the rate of load shedding to ensure that the decrease in load does not
result in retardation of crack growth rates. This would introduce error into the calculated crack
growth rate behavior, which would result in an error in the determination of the fatigue crack
growth threshold stress intensity, AK,,.

Another factor which must be taken into consideration is crack closure. Under some
combinations of environment, geometry, and loading, a crack will remain closed during some
portion of the fatigue cycle. This crack closure phenomenon is commonly observed, even for
tension-tension cycles. Little or no additional damage accumulates at the crack tip during that
portion of the cycle when the crack is closed. Thus, the applied stress intensity range, AK, is
reduced to an effective stress intensity range, AK,y, 88 shown in Figure 111. After Figure 111,
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AK = Kmax - Kmin
and,
AKeff = Kmax - Kcl'
where, K, corresponds to the load level at which the crack closes.

Three general closure mechanisms are commonly recognized: oxide-induced, roughness-
induced, and plasticity-induced closure. Those closure mechanisms are shown schematically in
Figure 111. Oxide-induced closure can be explained simply. When an oxide layer or oxide debris
is formed at the crack tip and reaches a thickness on the order of the crack-tip-opening-
displacement, it can serve to prop the crack open at a load above the minimum. The effective
stress intensity range is reduced accordingly. Roughness-induced closure occurs by a similar
mechanism. Crack surface asperities combined with the minor Mode II (sliding) displacements
intrinsic to Mode I crack opening can cause the crack to close before the minimum load is
reached. Again, this mechanism is significant only when the scale of roughness is comparable to
the crack-tip-opening-displacement. Plasticity-induced closure is related to the plastic deforma-
tion occurring at the crack tip. As the crack extends, the residual deformation from the plastic
zone ahead of the crack produces a plastic wake along the flanks of the crack. Since the
undeformed elastic material surrounding the crack restrains expansion in other directions, the
majority of the residual deformation occurs perpendicular to the crack surface. As the crack
closes, this expanded material comes into contact before the minimum load is reached, thus
reducing the effective AK. Although these mechanisms differ considerably, they all have the
effect of reducing the effective stress intensity range, thereby decreasing the observed crack
growth rates.

The load shedding schedule used is developed in Reference 9:

AK = AK, exp®* (3)

where the zero subscript indicates the initial values of the test and C is a constant which
determines the rate of decrease of stress intensity range (load). This expression was derived by
noting that in a K-decreasing test, the mcnotonic plastic zone size should decrease. It was then
assumed that the rate of change in plastic zone size rewains consitant wiih increasing crack
length. The constant C is defined as:

1 dK
C=%da (4)

which is the normalized K-gradient. The value of C that is chosen depends on the material, the
load ratio, R, and the environment. The constant, C, also should be chosen to obtain five da/dN,
AK pairs of approximately equal spacing per decade of crack growth rate. In this program, C
varied from -0.08 mm™! to -0.04.0 mm™.

Under computer control, the load is automatically decreased to reduce the stress intensity
range, AK. The specimen compliance is monitored and used to provide an indication of crack
length. The computer calculates the value of stress intensity range associated with the crack
length and adjusts the load to reduce AK according to Equation (3). Several visual crack length
measurements are taken over the course of the test to confirm and calibrate the compliance
measurements. The specimen compliance is determined from load versus crack-mouth-opening-
displacement records, as described in Reference 9.
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Load shedding is continued until a minimum of five da/dN, AK pairs of approximately
equal spacing are obtained between crack growth rates of 10 and 10! m/cycle. Linear
regression is then used to obtain the best-fit line to the data in this region. The regressed line is
used to calculate the AK value that corresponds to a crack growth rate of 10'!Y m/cycle. This
value of AK is used as the operational definition of fatigue crack growth threshold, AK,,. (This
regression technique was not used for this contract for reasons detailed in the following
discussion section.)

To check the validity of the data obtained from the K-decreasing tests, K-increasing tests
were performed on several specimens after a determination of AK, was made by the
K-decreasing procedure. The data from the two methods should correspond, indicating that
retardation effects are not present in the data obtained from the K-decreasing method and that
the value of C chosen provides a valid test for the determination of AK,.

¢. Resuits
(1) Crack Growth Results

Ti-24A1-11Nb was tested at 26°C, 427°C and 650°C. The effects of temperature for a stress
ratio of R = 0.1 and frequency of 20 Hz are shown in Figure 112. The 650°C condition exhibited
the most rapid growth rate while the lower temperatures experienced a reversal at approximately

7MPa \/Tﬁ stress intensity after which 26°C growth exceeded 427°C growth. This ordering was
effectively duplicated for Ti-25A1-10Nb-3V-1Mo and can be seen in Figure 113. The 26°C data
also describe the effects of prior beta grain orientation resulting from the highly directional
macrostructure previously described. The orientations were shown in Figure 29. Surprisingly
little difference can be seen as was the case with fracture toughness testing. A comparison of
427°C and 650°C, 120-second peak load dwell test crack growth rates is shown in Figure 114
where the lower temperature poses a distinct advantage. Temperature effects are shown for
Ti-24Al-11Nb and Ti-25A1-10Nb-3V-1Mo at the lower 0.17 Hz frequency in Figures 115 and 116
respectively. The ordering is unchanged from that seen at 20 Hz with the 650°C growth rate
being the most rapid.

The 26°C curve in Figure 116 is a composite of both 0.17 Hz and 20 Hz results and, as is
evident, no frequency effect exists. Consequently, the data were pooled. As in the 20 Hz results
previously seen for both alloys, the crossover for the 26°C and 427°C data again occurs. This time
the reversal takes place at approximately 2x10* m/cycle growth rate for both alloys.

Temperature effect for the highest mean stress condition tested, R = 0.7, is demonstrated in
Figures 117 and 118 for Ti-24Al-11Nbh and Ti-25A1-10Nb-3V-1Mo, respectively. The 650°C
growth rate is most rapid while the 427°C and 26°C exhibit the same mixed behavior described in
all previous cases. The ordering holds true for both alloys. Stress ratio effects for the two alloys
appear in Figures 119 and 120 and show crack growth rate to be greatly accelerated with
increasing mean stress in both cases.

Correlative parameters for the Ti-24Al-11Nb stress ratio model appear in Figures 121
through 124 for the coefficients C1 through C4 respectively; C1 is the material constant and C2
through C4 reflect functions of frequency, stress ratio, and temperature.

In Figure 125, the inodel is demonstrated for Ti-24Al-11Nb at 427°C and 0.17 Hz showing a
minimum R? of 0.9677 and standard estimate of error of 0.0623. The model accurately fits the
R = 0.1, 0.5 and 0.7 data.

Ti-25A1-10NDb-3V-1Mo strass ratio effects are shown in Figure 126 for 427°C at 0.17 Hz and
show a similar convergence at the higher stress intensities as was seen for Ti-24Al-11Nb. The
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650°C comparisons of R = 0.1 and R = 0.7 are shown in Figures 127 and 128 for the two alloys,
and the ordering remains the same with the R = 0.7 crack growth rate exceeding that of the
R = 0.1 stress ratio.

Frequency effects are shown for the two alloys at 26°C in Figures 129 and 130. At this
temperature, neither alloy exhibits any effect due to frequency. Increasing frequency results in
decreased growth rate at higher temperatures (427° and 650°C) for both alloys as seen in
Figures 131 through 134. Alloy comparisons have been drawn at all temperatures, stress ratios.
and frequencies, and appear in Figures 135 through 143. Ti-25A1-10Nb-3V-1Mo was generally
faster in crack growth rate although in some cases, 650°C, 20 Hz, R = 0.1 or 26°C, R = 0.7 for
example, differences were not significant. In one case, 427°C, R = 0.7, Ti-24Al-11Nb exhibited
the more rapid growth. A discussion of these results follows.

{2) Threshold Results

Room temperature comparisons of threshold crack growth rate for the two alloys are shown
in Figures 144 and 145 for R = 0.1 for R = 0.7, respectively. In both cases, Ti-25A1-10Nb-3V-1Mo
exhibits the lower threshold value. No difference is seen between the two alloys at 650°C for
R = 0.1 in Figure 146; however, Ti-25A1-10Nb-3V-1Mo does show a lower threshold at R = 0.7 in
Figure 147 at 650°C. The parody at 650°C for R = 0.1 may be oxidation related. Ti-24Al-11Nb
temperature effects on threshold behavior are seen in Figure 148 for R = 0.1 and Figure 149 for
R = 0.7.The R = 0.1 data shows no grouping of 26° and 427°C data or the greatly reduced
capability at 650°C as observed in fatigue testing. A reduction is seen in threshold value with
increasing temperature. Ti-25A1-10Nb-3V-1Mo temperature effects on threshold growth appear
in Figure 150 for R = 0.1 and Figure 151 for R = 0.7. In both cases, an increase in temperature
has resulted in a decrease in threshold stress intensity.

Stress ratio effects on threshold crack growth for Ti-24Al-11Nb are shown in Figure 152 for
26°C, Figure 153 for 427°C, and Figure 154 for 650°C. In all three cases, the higher R = 0.7 stress
ratio results in significantly lower threshold capability. The difference hetween R = 0.7 and
R = 0.1 seems to decrease with increasing temperature. The same effect is seen in Figures 155
and 156 for Ti-25A1-10Nb-3V-1Mo at 26° and 650°C respectively.

The correction of threshold data for closure effects seen in Figure 157 has reduced the stress
ratio effect previously noted for Ti-24Al-11Nb at 26°C. In Figure 158, closure correction has
affected consolidation of 427°C stress ratio effects at lower stress intensities. Since this effect did
not occur in closure corrected 650°C results (Figure 159), oxidation does not seem to be the
explanation. Stress ratio consolidation was observed in the Ti-25Al-10Nb-3V-1Mo comparison
(Figure 160) corrected for closure at room temperature and would indicate the existence of
roughness-induced closure effects. Plasticity-induced effects should be minimal due to low
ductility of the material at 26°C. Secondary cracking, however, is extensive and material
exfoliation (common in these alloys) would lead to crack wedging.

The effects of correcting for closure at 650°C for Ti-25Al1-10Nb-3V-1Mo are shown in
Figure 161. As with Ti-24Al-11NDb, the effect has been a reduction in the R = 0.1 threshold stress
intensity. The effect of crack length is shown in Figure 162 for Ti-25A1-10Nb-3V-1Mo at 26°C.
The stress ratio is 0.1 and variability in closure correction exists since Figure 163 eliminates
closure from the crack length comparison with significant effect on the long crack data. Constant
load tests are run to detect any load history effects.

Little effect was ohserved resulting from decreasing stress intensity by load shedding
compared to results obtained from constant load testing. The results at 26°C are shown for
Ti-24Al-11Nb in Figure 164 for R = 0.1 and in Figure 165 for R - 0.7. The same comparisons are
made in Figures 166 and 167 for R = 0.1 and (.7, respectively, at 650°C where an effect appears at
R = 0.1.
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d. Discussion of Results
(1) Temperature Effects

The dependency of isothermal crack growth rate upon temperature was investigated at
room temperature, 427°C, and 649°C. In general, AKpy canolq increased with decreasing
temperature, and K, was larger at elevated temperature than at room temperature. Temperature
effects were more pronounced than is seen in more conventional materials, which is probably
related to the large ductility increase between room temperature (6 percent) and 427° to 650°C
(elongation greater than 20 percent). The room temperature crack growth curves are nearly
vertical — characteristic of a brittle material.

At all conditions tested, Ti-25A1-10Nb-3V-1Mo generally had equal to or slightly higher
crack growth rates than Ti-24Al-11Nb. The differences in crack growth rates were, in all cases,
relatively small. The somewhat faster crack growth rates for Ti-25A1-10Nb-3V-1Mo are probably
associated with higher strength and a finer microstructure.

Temperature comparisons generally indicate increasing crack growth rates with increasing
temperature. The increase in crack growth rates are suspected to be related to increased
oxidation at e.: -ated temperatures. The slopes of the crack growth rate curves decrease with
increasing temperature resulting in crossing of the curves in some instances. Flatter slopes at
elevated temperatures are typical of higher ductility materials, and it is therefore assumed that
the changes in slope are associated with the large increase in ductility with temperature shown in
Figure 26. Further, if oxidation and ductility are seen as competing mechanisms in the process
zone ahead of the crack (one increasing, and one decreasing the crack growth rates), smaller
changes in slope and/or greater differences in crack growth rate with temperature at low
frequencies would be expected, where the crack is open for longer periods allowing greater
oxidation. A comparison of Figures 112, 114, and 115 shows this to be exactly the case.

(2) Frequency Effects

The effects of cyclic frequency upon isothermal crack propagation rate were studied at room
temperature, 427°C, and 649°C. Stress ratio was held constant at R = 0.1 and frequencies of 20
Hz, 0.167 Hz, and 120 second peak load dwell were applied. As indicated by Figure 129, there is
no frequency effect at room temperature between 20 and 0.17 Hz for R=0.1. By comparison,
Figure 133 displays a large difference in crack growth rates for frequencies of 20 Hz, 0.17 Hz, and
120-second dwell cycles at 650C, R=0.1. As mentioned previously, the increase in crack growth
rates with decreasing frequency is thought to be mainly due to oxidation. This is supported by
Figure 133, which shows drastically increasing crack growth rates with decreasing frequency at
elevated temperature. At the limiting condition for these data, the 120-second dwell data is
virtually vertical. Note, however, that these differences in crack growth rates occur at higher AK
levels, above approximately 7 MPa\/m. The data appear to converge at low AK levels.

(3) Stress Ratio Effects

Normal stress ratio effects were observed as indicated in the R comparison figures. The
AKrTp eshold decreased as R increased. There was a considerable increase in crack growth rates
with increasing R. This is common behavior for R data in both magnitude and direction, and can
probably be directly attributed to the effect of mean stress.

The results of near-threshold tests at room temperature and 650°C are included in Figures
152 and 154. These tests were conducted on separate CT specimens in a K-decreasing mode. All
of the threshold tests were conducted at 20 Hz. Note that the threshold data display the same
trends as the K-increasing data. This held true ‘or the effects of temperature on crack growth
and for the alloy comparisons discussed earlier.
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(4) Crack Growth Interpolation Model

Initial plans were to generate a crack growth interpolation algorithm for Ti-24Al-11Nb. For
conventional titaniums, the algorithm calculates hyperbolic sine coefficients (C, through C,) for
a set of crack growth test conditions. The hyperbolic sine curve relates da/dN to AK as described
below.

log (da/dN) = C, sinh (C, (log (AK) + C,)) +C,

Coefficient C, = 0.7 for titanium alloys. The other hyperbolic sine coefficients are functions of
test temperature, stress ratio, and frequency.

A material must exhibit a continuous transition in crack growth behavior over temperature
to be modeled with a global interpolation algorithm. Ti-24Al-11Nb behaves like a conventional
material at 427° and 650°C but is brittle at room temperature. This discontinuity precludes a
single algorithm to describe its behavior completely. A partial model based on the results of tests
conducted at 427°C, 0.17 Hz, and stress ratios of R = 0.1, 0.5, and 0.7 was developed. This
algorithm provides sinh coefficients for test conditions of 427°C, 0.17 Hz, and any stress ratio
between 0 and 1.

(5) AK,, Discussion

The near threshold decreasing-K testing displayed the same general trends as the baseline
constant load tests for both materials. The most obvious of those trends are slower crack growth
rates for Ti-24Al-11Nb than for Ti-25A1-10Nb-3V-1Mo, slightly reduced AK,; values at elevated
temperatures for both materials, and a large stress ratio effect with the higher R tests showing
much reduced crack growth rates. These results would be anticipated since the few constant load
tests run in the near-threshold region agreed with the decreasing-K data.

Crack growth rates measured using constant load and decreasing-K tests were very nearly
equal. Only a few of the sinh curves fit to the constant load data required revision to bring them
into agreement with the decreasing-K data, and those revisions were minor.

The near threshold crack growth rate data displayed unusually steep slopes, particularly for
high stress ratios. This behavior necessitated the use of relatively small K-gradients for
controlling the load shedding rates. Even when using small K-gradients (-0.04 mm™ (-1.0 in.”!)
as opposed to -0.06 to -0.08 mm! (-1.5 to -2.0 in.’! ) for conventional titanium alloys), it was often
difficult to obtain the number of points per decade of crack growth rate recommended by ASTM
standard. In several instances, it was also impractical to calculate an absolute value for AK,,
based on a Paris equation fit to the near threshold data as detailed by ASTM. The slope of the
threshold data was simply too near vertical to perform a numerical slope evaluation. Therefore,
absolute AK,, values based on Paris equations are not tabulated for these data. If AK; values are
required, they can be obtained graphically with very little error.

Closure measurements were taken on all decreasing-K tests. Closure levels expressed as a
percentage of maximum load were calculated based on deviation from linearity of the load-
displacement curve. This technique is described in detail by Donald (Reference 10). For the
purposes of this contract, the crack opening load was arbitrarily defined as the point where the
slope of the load displacement curve deviated from a constant value by 8 percent. As indicated by
the stress ratio comparisons presented previously, calculating AK,y in this fashion did not
consistently collapse the stress ratio data to a single curve, which is a common indicator of a
successful closure measurement technique. Altering the closure levels by varying the definition of
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crack opening load to a deviation of the slope of the load-displacement curve between 1 and 16
percent did not improve the behavior of the stress ratio data.

In general, the closure level increased with increasing crack lengths. However, this did not
occur in a regular fashion. Often the crack opening loads changed abruptly. This behavior is
illustrated in Figures 162 and 163. In those figures, the data from sequential decreasing-K tests
on the same specimen are presented with and without closure correction. Specimen 4593T
started at a crack length of approximately 9.8 mm, and 4599T2 started at a crack length of
approximately 12.1 mm. As seen in the figures, the two specimens fall directly in line in terms of
AK, and are widely separated when plotted versus AK . In fact, at a crack length of about 14mm
on 4599T, the closure level changes abruptly from 18 to 32 percent resulting in a separation of
the AK,; data on a single specimen.

The abrupt changes in closure level are directly related to the active closure mechanism.
The most likely closure mechanism is a combination of roughness and oxidation-induced closure
with the roughness mechanism being dominant. Figures 179 and 180 illustrate the mechanism
resulting in roughness of the fracture surfaces with asperities well in excess of the observed crack
opening displacements. In fact, it appears that entire groups of grains are separating from the
fracture surface in a few areas. The roughness of the fracture surface is almost certainly
attributable to the extreme bifurcation tendency observed. A considerable amount of oxidation
was also present in the 650°C tests. It is improbable that a large degree of plasticity-induced
closure was present due to the low ductility of the material and the minimal K levels. Further
evaluation of the active closure mechanisms is beyond the scope of the contract.

The inability of these straightforward closure measurement techniques to collapse stress
ratio data and the evidence of abrupt changes in closure levels indicates that a more sophisticated
closure analysis would be required to successfully employ AK ¢ in evaluating the threshold stress
intensity for these materials. Until those techniques are evaluated, it is recommended that the
near threshold data be used only in terms of AK.

5. TASK IV — THERMAL MECHANICAL FATIGUE (TMF)
a. Summary

Various effects on the TMF life of both titanium aluminide alloys were investigated. These
effects included strain ratio, strain range, and cycle type. One of the alloys was also tested for the
effect of hot-salt stress corrosion (HSSC). The test specimen used is shown in Figure 168 and is
of hollow design.

Two strain ratios (minimum strain/maximum strain) were evaluated, R = —1.0 and 0.0.
This essentially tests the effect of mean stress. Various strain ranges were also tested for each
cycle type. The two TMF cycle types are the out-of-phase or Type I cycle (Figure 169), and the
in-phase or Type Il cycle (Figure 170).

b. Technical Approach

The results of the TMF testing are presented in Tables 37 and 38, and Figures 171 and 172.
A comparison of Ti-24Al-11Nb and Ti-25A1-10Nb-3V-1Mo is shown in Figure 173. The Ti-25Al-
10Nb-3V-1Mo had generally longer TMF life than Ti-24Al-11Nb alloy. This difference in life is
not very large and is within experimental scatter.

The effect of cycle type for both alloys was investigated. Type I life was similar to that

observed for Type II cycles for Ti-25A1-10Nb-3V-1Mo. Type I results are compared to Type Il
results for Ti-24Al1-11Nb in Figure 174. There is no significant difference between the TMF life
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of the Type I cycle and the Type II cycle for this alloy either. The effect of strain ratio was also
studied for both of the alloys. Each alloy was tested with a strain ratio of 0.0 and —1.0 using Type
I cycles. The strain ratio of 0.0 resulted in higher mean stress. Due to control problems during
testing, only one test of each alloy was tested at the strain ratio of 0.0. Both alloys exhibited
decreased TMF lives for the strain ratio of 0.0 because of the increased mean stress. The effect of
hotsalt corrosion on the primary alloy was also studied. As expected, the tests with salt on the
alloy had significantly lower TMF lives than the unsalted tests (Figure 175).

The TMF data was also characterized using a hysteretic energy based model (References 11
and 12). The hysteretic energy of a material is based on the maximum tensile stress and the
inelastic strain range. Determination of the inelastic strain for the TMF cycle is complicated by
the variation of material constants with temperature. A technique <eveloped in previous work
(Reference 13) was used to determine the inelastic strain of the cycle. This method, called the
“Incremented Inelastic Strain Technique,” uses Ramburg-Osgood regressions of the inelastic
strain at each temperature of the cycle. The TMF cycle is divided into legs; Type 1 and Type II
cycles have two legs each. At each temperature increment of the leg, the inelastic strain is
iterated from the Ramburg-Osgood regressions at that temperature. The inelastic strain is
averaged over the leg and the strain is summed for all of the legs. The tensile stress for the
hysteretic energy equation is measured directly from test data.

¢c. Results

_ The hysteretic energy results are shown in Figure 176 and Table 39. Correlation coefficients
(R?) greater than 0.80 indicate that the hysteretic energy model is reasonable for this material.
The actual TMF life versus predicted life is presented in Figure 177.

d. Discussion of Results

Low room temperature ductility and post-creep ductility loss were expected to present a
significant problem for fatigue capability, but isothermal LCF testing at both 26° and 650°C
exhibited impressive lives under controlled strain conditions. Peak strain ranges for 650°C tests
were similar to post-creep room temperature ductility maximums. An explanation lies in the fact
that sufficient ductility exists at this temperature to prevent any negative impact of ductility loss
on fatigue life. Ductility at 26°C (approximately 5 percent) provided a comfortable margin to
conduct strain control tests at 1.5 percent Ast.

The loss of ductility at room temperature was expected to be most detrimental in an out-of-
phase TMF cycle. In the Type I cycle, thermal exposure is repeatedly followed by maximum
strain at nearly room temperature. This test would be expected to highlight the post-creep
ductility loss problem, especially when compared to an in-phase cycle where tensile yielding is
not encountered at low temperature, and peak strain occurs at 650°C where available ductility is
adequate regardless of post-creep ductility loss. Minimal difference was observed. An explanation
may lie in the high degree of cyclic hardening noted.

In the out-of-phase cycle, as ductility is lost through successive high temperature
excursions, inelastic strain range is simultaneously lowered through cyclic hardening (recall that
in isothermal tests a 10 X reduction in inelastic strain was observed). This would have the effect
of nullifying the post-creep ductility loss. The need for further testing to address this effect is
indicated.

Another interesting occurrence is the small difference observed in the alloy comparison in
Figure 173. Both alloys would have experienced the same cyclic hardening and surface oxygen
embrittlement. Thus, all other things being equal, the only remaining difference is a significant
strength advantage for Ti-25A1-10Nb-3V-1Mo. Yet the life difference, especially at 0.8 percent
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strain, is not impressive. The effects would seem to be related to cyclic stress and strain range
instability, and reflects on the success of the hysteretic energy modeling technique. Since cyclic
stabilization occurs as early as at 10 percent of life and hysteretic energy accounts for both
inelastic strain range and mean stress, the model was able to deal with the extreme cyclic
instability encountered.

As expected, hot-salt stress corrosion effects were quite severe. Extensive secondary
cracking along gage section sides and heavy fracture surface oxidation, as seen in Figure 178,
were common. A 20 X life debit (approximately) was observed at 0.6 percent strain. These
results, coupled with those obtained in isothermal LCF, point out the necessity of providing
protection against HSSC.

6. TASK V — FRACTURE MECHANISMS
a. Summary

Representative specimens from all phases of the program were analyzed to gain insight into
the mechanisms of fatigue crack initiation and crack propagation. In addition, a significant
amount of analysis was conducted on specimens from the process development effort.
Mechanical property test specimens (tensile, creep, toughness, and impact) were scrutinized to
form a basis for an understanding of the effects of microstructure and processing on service and
fracture behavior.

b. Technical Approach

Essentially no difference in fractographic details existed between the alloys. Hence, the
observations apply to both alloys unless otherwise stated. From this work, the susceptability of
the alloys to oxygen embrittlement was observed and subsequently studied in greater detail. Also
noted was the alloys tendency toward secondary cracking and branching leading to significant
flaking and exfoliation of material from fracture surfaces. These events were seen in detail in
Figure 179, where after only 30 minutes at €50°C, 0.0234mm of oxygen diffused layer has formed
on an isothermal strain control LCF specimen. Also seen is the extent of secondary cracking and
branching with no apparent interaction with alpha-2/beta platelet structure. In Figure 180, a
427°C specimen shows similar cracking and a 650°C specimen provides a good example of the
mechanism that results in material loss from fracture surfaces. This effect probably plays a
significant role in crack closure since very small particles of material are likely to be freed in the
crack path to shift position and become “wedges.” The lack of obvious crack interaction with
microstructure is seen in Figure 181. Oxidation from the 427°C exposure during testing has
revealed the Ti-24Al-11Nb microstructure. The secondary crack that formed on the gage surface
allowed study without polishing or etching, which might have obscured a feature of interest. The
gage section was examined directly on a metallograph. There does not appear to be a prior beta
grain boundary at the area of origin nor does the surface propagation seem to be affected by the
alpha-2 beta platelet structure. Typically, fatigue origins form at surface connected prior beta
grain boundaries with significant amounts of grain boundary alpha-2 phase as seen in Figure 182.
These areas are frequently marked by preferential alignment of the Widmanstatten structure, as
seen in Figure 183. When observed fractographically, they appear as in Figure 184a. This
characteristic structure aids in the identification of failure crack origins.

Figure 184b shows the fractographic appearance of an oxygen embrittled surface layer
resuiting from 650°C exposure. The circumferential cracks seen earlier in tensile and creep
rupture testing appeared to be associated with grinding marks. In Figure 185, the surface effects
of oxygen embrittlement are detailed. Here, the polishing marks are parallel to the stress axis,
while oxide cracks form normal to the loading diection. After approximately 400 hours at 650°C,
material has started to be ejected from the surface. The effect was not typical and 400 hours of
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LCF exposure represents an extreme case. In Figure 186, the embrittled layer appears optically
almost like a coating. The subsurface origin is detailed in Figure 187 and in spite of the materials
conversion to barstock and the high degree of forging upset, appears to be a void. Optical views of
grain boundary alpha-2 fatigue origins at 127° and 650°C are shown in Figure 188. A 26°C LCF
origin at a surface connected prior beta grain boundary is shown in Figure 189. A second example
at 427°C is shown in Figure 190.

Another type of origin occasionally found in fatigue failure appears in Figure 191. The
shape and size of the features suggest alpha-2 platelets, perhaps favorably oriented to allow Stage
I crystallographic cracking. A second example of this type of feature is seen in Figure 192. This
example is from a notched HCF failure at 427°C. Figure 193 shows another example of a
subsurface origin, this time exhibited by a 650°C, 120-second dwell test. Stereographic
examination indicated the presence of porosity.

The occurrence of fatigue striations was seen only occasionally as shown in Figure 194.
Propagation was by transgranular cleavage in general. No obvious intergranular propagation was
present in fatigue fractures. An example of a notched LCF failure at 650°C is shown in
Figure 195. A single point origin (nonspecific) is visible. Another example is shown in Figure 196,
this time at 427°C and reveals the fatigue crack propagation aspect ratio (somewhat distorted due
to specimen tilt). The notched specimen, shown in Figure 197, was prestressed at 427°C and run
at 26°C. Bifurcation and flaking of material is seen. Fluorescent penetrant has marked the
critical crack depth. A 650°C origin in Figure 198 shows an unusual texture at what may be an
alpha-2 phase.

Investigations into the effects of coatings produced the multiple surface origins in both
notches of the Ti-24Al-11Nb specimen (at 650°C) shown in Figure 199a. Metallography, seen
earlier, showed no oxygen diffusion indicating that the alumina forming coating may be effective
against oxygen embrittlement. Coating behavior in HSSC is seen in Figure 199b where multiple
origins are present in both notches. Figure 199c¢ shows a notched Ti-25A1-10Nb-3V-1Mo
specimen coated with TiN and exposed to HSSC at 427°C. Continuous surface origin and (as in
the two previous cases) extensive bifurcation has occurred.

High cycle fatigue (HCF) origins for the most part were similar to LCF initiation sites.
Figure 200 shows a subsurface origin at a possible void detected in a 650°C HCF test. Figures 201
and 202 show surface connected prior beta grain boundaries in 26°C fatigue origins. A subsurface
origin produced at 650°C in Ti-24Al-11NDb is shown in Figure 203. The area was heavily oxidized
and could not be analyzed. Another 650°C HCF fracture is shown in Figure 204 at a prior beta
grain boundary. Figure 205 shows a 427°C notched Ti-24Al-11Nb HCF failure with alpha-2/beta
platelets prominent at the origin.

Crack growth specimen fracture surfaces are shown for the three test temperatures at 20 Hz
for Ti-24Al-11Nb in Figure 206. The low magnification macro photos show the characteristic
flaking of material most obvious here at 26°C but present at the higher temperature as well. This
tendency results in strong closure effects due to surface roughness. The flaking was also noted for
the equiaxed (beta solutioned) structure described earlier in fracture toughness and impact
screening tests. The prior beta grain structure is apparent as elongated grains in the direction of
crack propagation. The silver markings are areas of grain boundary alpha-2 in many cases. The
different prior beta grain morphology presented by the two specimen orientations, shown in
Figure 207, did not have an effect in either fracture toughness tests or crack propagation tests.
This and the fact that the predominant fracture mode in fatigue and crack growth tests was by
transgranular cleavage suggests that prior beta grain size does not play an important role in
cyclic behavior as is assumed.

In Figure 208, the 26°, 427°, and 65(:°C fractures were produced at 0.17 Hz. The fractures
appear similar to 20 Hz fractures with the characceristic flaking of material again present.

24




Scanning electron microscope (SEM) views of the 20 Hz and 0.17 Hz fractures, in Figures 209
and 210, show little difference due to frequency. Both fractures show secondary cracking and a
psuedo-cleavage appearance with small amounts of ductility. The 427°C textures, in Figures 211
and 212, show a more ductile appearance but at 650°C (Figures 213 and 214), the fracture surface
seems more brittle. This is probably due to the tendency for oxidation at this temperature.
Ti-25A1-10Nb-3V-1Mo fractures at 26°, 427° and 650°C are shown in Figure 215 at low
magnification and appear similar to those described for Ti-24Al-11Nb. The SEM examination
reveals differences associated with the finer Widmanstatten structure (Figures 216 and 217) and
higher 26°C ductility as some ductilivy is apparent in Figure 216. Pieces of material can be seen
nearly parted from the fracture surface. The 650°C fracture, shown in Figure 218, exhibits
exfoliation of material through bifurcation, extensive secondary cracking, and significant
amounts of oxidation. The oxidation effect at 650°C has been observed previously (Reference 14)
with vacuum testing resulting in increased evidence of ductility in fractographic studies.

Thermal mechanical fatigue (TMF) fractures produced with Type I out-of-phase and
Type Il in-phase cycles are shown in Figure 219. The out-of-phase fracture shows a single origin
and little oxidation due to the crack opening only at the low temperature end of the cycle. The in-
phase fracture appears more like 650°C isothermal failures with heavy oxidation. Inside diameter
origins are seen in spite of the argon passing through the specimen for cooling purposes. Enough
oxygen is present for embrittlement to occur. An example of surface oxidation is shown in Figure
220 where scale can be seen rumpling and spalling. In Figure 221, a typical in-phase TMF failure
origin area is shown with an oxygen diffused layer that is indicated by arrows. An out-of-phase
fracture is shown in Figure 222. The side of the gage section exhibits extensive secondary
cracking. The origin appears to be oxide-related and no point source is apparent. In Figure 223,
an in-phase TMF origin at a surface connected prior beta grain boundary is shown intersecting
the dark oxygen embrittied layer at the outside diameter of the specimen.

Hot salt stress corrosion tests were run on Ti-24Al-11Nb with in-phase and out-of-phase
test cycles. The effects of HSSC with a Type II cycle resulting in maximum load at 650°C are
evident in Figure 224 where gross attack has occurred. Multiple outside diameter surface origins
appear and extensive secondary cracking has taken place in one of the spots where the salt
solution was applied. Further examination of HSSC TMF fractures are shown in Figures 225 and
226. Both fractures show secondary cracking and oxide films. Figure 226 exhibits an
intergranular appearance. However, sectioning through secondary cracks in the gage section
(Figure 227) shows cracks to be transgranular.

Late in the program, X-ray diffraction was conducted to examine crystallographic texture.
In retrospect, some specimens could have been oriented to maximize the texture effect.
Figures 228 and 229 show pole figures for the beta forged Ti-25A1-10Nb-3V-1Mo with the radial
direction represented at the center and the pancake normal at the 0 degree position. Figure 228
shows the preferred orientation of the (110) planes of the beta-phase which implies a strong (100)
fiber texture in the normal direction of the pancake. The ‘blotchy’ concentrations of contours
indicate the presence of large grains. Figure 229 shows that the (0002) planes of the alpha-2
phase has the same orientations as the (110) beta-phase planes, which is the result of habit plane
transformation. A schematic showing the orientation of the pancake in relation to the pole
figures is shown in Figure 230.

25




lll. CONCLUSIONS AND RECOMMENDATIONS
1. TASK ! — PROCESS OPTIMIZATION

Optimum mechanical properties were obtained with isothermal beta forgings. The desired
microstructure, a fine Widmanstatten structure, was produced by air cooling from the forging
temperature for Ti-25A1-10Nb-3V-1Mo. The Ti-24Al-11Nb required a fan air cool, and the
Widmanstatten structure was still not as fine as that achieved in Ti-25A1-10Nb-3V-1Mo. Prior
beta grain size wwas cimilar for both alloys. No subsequent solution cycle was applied, and little
effect on properties was observed with various stabilization and age cycles.

The directional microstructure resulting from the absence of a solution cycle did not appear
to be a negative factor. Post creep exposure ductility loss indicates equilibrium was not reached
with Ti-25A1-10Nb-3V-1Mo. Further work is needed in this area.

Both alloys exhibit a pronounced tendency toward the development of an oxygen embrittled
surface layer starting at 538°C. Ti-25A1-10Nb-3V-1Mo was stronger and more ductile than
Ti-24A1-11Nb and possessed better creep capability. Impact resistance and toughness for the two
alloys were similar. Prior beta grain morphology did not effect toughness at 26°C when various
orientations were tested.

2. TASK Il — FATIGUE CRACK INITIATION

Controlled strain testing showed life to be dependent upon mean stress and inelastic strain
range. The stronger Ti-25A1-10Nb-3V-1Mo exhibited generally better LCF capability than the
Ti-24A1-11Nb. Negligible remaining life from initiation was observed in smooth strain control
LCF. Extreme cyclic hardening and stress relaxation was observed with both alloys. Cyclic
stability was achieved at 10 to 20 percent of total life. Future work should inciude tensile strength
and ductility assessment after cyclic stabilization has been reached. Low temperature ductility
was not a life limiting factor. Tests conducted at 1 percent total strain range exhibited room
temperature lives similar to those observed at 427°C where ductility is high. Dwell tests at 427°
and 650°C experienced significant stress relaxation to mean stresses at and below zero
respectively. Extreme surface oxidation was observed, yet specimens exhibited LCF lives greater
than 10° cycles (despite oxygen embrittlement). Hysteretic energy damage modeling was
employed and successfully consolidated at all temperatures and strain ratios for both alloys.

Notched LCF results showed little difference between 26° and 427°C lives; however, 650°C
capability was considerably reduced. Ti-25A1-10Nb-3V-1Mo capability was greater than Ti-24Al-
11Nb. Remaining life from 0.8 mm surface crack length was generally lower than 10 percent of
total life. The effects of warm prestressing were inconclusive and, judging from HCF results, may
have been resolved if the 26°C tests were conducted at a lower stress level. Futher work on the
effects of compressive residual stresses is needed.

The evaluation of an alumina forming coating, resulted in a fatigue debit at 26° and 650°C;
however, oxygen diffusion into the substrate (Ti-24Al-11Nb) seems to be inhibited. The coating
did not provide protection against HSSC. The evaluation of TiN PVD coating also resulted in a
debit in life; however, TiN life was not further decreased by exposure to HSSC. Further testing
should be done in this respect since the evaluation was conducted at 427°C for the TiN/
Ti-25A1-10Nb-3V-1Mo system. Future work should examine both coating and alloy systems and
HSSC resistance in more detail.

Smooth HCF life was found to decrease with increasing temperature dependent upon mean

stress, i.e., R = 0.05 showed a large temperature effect while R = -1 did not. Notched HCF results
(all run at R = 0.05) show little difference in 107 cycle fatigue strength for 26° versus 650°C due
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to local stress relaxation in the notch at 650°C. Low cycle fatigue (LCF) versus HCF comparisons
showed no frequency effect. Warm prestressing was found to be effective with HCF tests run at
427°C. Ti-24A1-11Nb coated with an alumina forming coating exhibited more than an order of
magnitude life debit at 26°C. Hysteretic energy modeling using inelastic strain estimations
was not successful due to the material’s cyclic instability. Mean fatigue strengths for
Ti-25A1-10Nb-3V-1Mo were 10 to 50 percent higher, depending on conditions, than those
observed for Ti-24Al-11Nb.

3. TASK il — FATIGUE CRACK PROPAGATION

Room temperature crack growth behavior was typical for that of a brittle material. Plots of
da/dN versus AK were very steep and growth was rapid. Orientation effects with respect to upset
were not present. In general Ti-25A1-10Nb-3V-1Mo exhibited higher crack growth rates. In some
cases differences were minimal. Temperature effects were more pronounced than those observed
in conventional titanium alloys. Threshold stress intensity decreased with increasing tempera-
ture while toughness increased. A frequency effect was not seen at 26°C but growth rate did
increase with decreasing frequency at 427° and 650°C. Crack growth rate increased with
increasing stress ratio for a given AK. The materials’ discontinuous transition in crack growth
behavior with increasing temperature precluded modeling with a global interpolation algorithm.
A partial model based on the condition where data from three stress ratios was available was
constructed. The 427°C model exhibited satisfactory predicted versus actual results.

Near threshold crack growth rate testing Ti-24Al-11Nb demonstrated consistently higher
threshold stress intensities than Ti-25A1-10Nb-3V-1Mo, except at 650°C, R = 0.1 where they are
approximately equal. Ti-24Al-11Nb and Ti-25A1-10Nb-3V-1Mo both exhibited lower threshold
stress intensities at elevated temperatures. There was no apparent difference in AK,, at 427°C
and 650°C for Ti-24Al-11Nb. Both Ti-24Al-11Nb and Ti-25A1-10Nb-3V-1Mo displayed a strong
correlation between stress ratio and AK,,, with higher stress ratios resulting in lower AK,,.
Standard closure measurement techniques do not appear to be directly applicable to these
materials. The techniques employed did not collapse stress ratio trends consistently, nor did they
account for the abrupt changes in closure level. It appears that this difficulty is due to the closure
mechanisms, the unusual microstructures, or some combination of both. The decreasing-K near
threshold crack growth rates agreed well with the constant load data and necessitated only minor
changes in the baseline crack growth rate models. An area of future work should be to examine
the relationship of oxygen diffusion rate compared to crack tip advance rate in the near threshold
regime versus more rapid crack growth.

4. TASK IV — THERMAL MECHANICAL FATIGUE

Ti-25A1-10Nb-3V-1Mo exhibited better TMF capability than Ti-24Al-11Nb. Cycle type did
not effect TMF life. Type I (in-phase) lives were similar to Type Il (out-of-phase) lives. Hot salt
stress corrosion is stress dependent. Hot salt stress corrosion (HSSC) reduced Type | TMF life
by more than an order of magnitude. Type II life experienced a greater debit for HSSC than
Type I cycling. Hysteretic energy modeling produced satisfactory results. Further testing is
needed to understand the relationship of post-creep ductility loss and simultanious cyclic
hardening.

5. TASK V — FRACTURE MECHANISMS

Both alloys develop brittle, oxygen diffused surface layers above 538°C. This layer is prone
to cracking perpendicular and parallel to the direction of applied load. Surface scale develops and
with prolonged exposure, exfoliation of the oxygen diffused layer occurs. Both alloys demon-
strated a pronounced tendency for crack propagation through the development of multiple
ancillary cracks. This condition does not appear to be associated with prior beta grain structure.
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Crack closure effects attributable to surface roughness result. The condition is seen in monotonic
as well as cyclic fractures at all temperatures. Fatigue crack initiation was most frequently
observed in the surface connected prior beta grain boundary alpha-2 phase. These features can
frequently be recognized by preferential alignment of the Widmanstatten structure along the
boundary. The alpha-2 phase appears as a distinct silver streak at the boundary. Subsurface
origins were observed occasionally. No obvious differences prevailed between LCF, HCF, or TMF
tests. Both alloys exhibited crack propagation predominantly by transgranular cleavage. The two
coatings evaluated exhibited multiple fatigue crack origins. The alumina former showed evidence
of crack initiation at the coating/substrate interface. The TiN coating cracks appeared to initiate
at nodules in the coating. Prior beta grain orientation did not effect 26°C toughness or crack
growth in the highly directional microstructure. The specimen orientations examined did not
reveal any effect resulting from the strong (001) fiber texture observed in X-ray diffraction.
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TABLE 2. Alloy Chemistry (Weight Percent for Ti-25A1-10Nb-3V-1Mo (a/0))

Al Nb V Mo Fe 0,

Heat V-6474 Top 138 184 314 195 0.11 0.073
Bottom 138 185 3.14 193 0.10 0.073

TABLE 3. Alloy Chemistry (Weight Percent for Ti-24Al-11Nb (a/o))

Ingot
Al Nb Fe 0, N
V-6629 Top 13.5 21.0 0.037 0.058 0.003

Bottom  13.6 21.0 0.040 0.054 0.004

TABLE 4. Ti-25A1-10Nb-3V-1Mo Isothermal Alpha-2 Plus Beta Forging Parameters

Forging Temperature - 1038°C (1900°F), Soak Time 0.5 hr
Strain Rate - 0.1 sec !
Atmosphere = [nert
Initial Dia = 156 mm (6.125 in.)
Final Dia = 406 mm (16 in.)
[nitial Height = 229 mm (9 in.), Final Height = 31.8 mm (1.25 in.)

TABLE 5. Candidate 3 (Alpha-2 Plus Beta Forging), Ti-25A1-10Nb-3V-1Mo
Heat Treatment

1150°C (2100°F) 1 hr, Fluidized Bed - Air Atmosphere
815°C (1500°F) 0.5 hr, Fluidized Bed - Air Atmosphere
Air Cool to Room Temp
593°C (1100°F), 8 hr Air

TABLE 6. Grain Size From Ti-24Al-11Nb Barstock

« Barstock as Received — Grain Size Obtained at Two Positions on Flat
Top-Surface of Billet, at Rim and Mid-radius Positions — Macro Grain Size: ‘!

Mid-radius — Predominantly M-10.5 to M-12.0, Occasionally M-10.0
Rim — Predominantly M-12.5 to M-13.0, Occasionally M-10.0
Note: " M-10 = 1.1 mm

M-105 = 0.95 mm
M-12 = 0.56 mm
M-125 = (.47 mm
M-13 = 0.40 mm

TABLE 7. Grain Size From Beta Forgings

Ti-25A1-10Nb-3V-1Mo

» Elongated (Flattened) Prior Beta Grains, ASTM Macro 7, Average Dia 3.2 mm (0.125 in.)
* Normal to Upset, Macro 10.5, Average Height 0.94 mm (0.037 in.)
+ Fine Acicular Alpha-2 + Beta Widmanstatten With Grain Boundary Alpha-2

Ti-24Al-11Nb

» Elongated (Flattened) Prior Beta Graii;s,—'ASTM Macro 7, Average Dia 3.2 mm (0.125 in)
¢ Normal to Upset, Macro 10, Average Height 1.1 mm (0.44 in.)
« Fine Acicular Alpha-2 + Beia Widmanstatter With Grain Boundary Alpha-2




TABLE 8. Heat Treatment Optimization Study Room Temperature Tensile Test Results,
Ti-25A1-10Nb-3V-1Mo

Ultimate
0.2% Yield St 1
Stabilization/ 2% Yield Strength Strength : Ductility
S/N Age Cycle MPa (ksi) MPa  (ksi) % EL % RA
1 A 682.6 (99.0) 906.0 (131.4) 33 4.4
A 716.4 (103.9) 915.7 (132.8) 33 65
3 B 661.2 (95.9) 8770 (127.2) 40 38
4 B 680.5 (98.7) 894.3 (129.7) 33 6.3
5 C 692.3 (100.4) 8529 (123.7) 27 38
6 C Thread Failure - — — -
7 D 692.9 (100.5) 883.9 (128.2) 24 26
8 D 655.7 (95.1) 819.8 (118.9) 1.6 43
9 E 700.5 (101.6) 788.1 (114.3) 06 13
10 E 659.8 (95.7) 799.8 (116.0) 1.6 38
11 F 674.3 (97.8) 830.2 (1204) 16 59
12 F 681.9 (98.9) 866.1 (125.6) 24 5.1

Stabilization/Age Cycles

A, B, and C = 816°C (1500°F)/0.5 hr
Plus
A = 593°C (1100°F)
B = 694°C (1200°F)
C = 704°C (1300°F)

D, E, and F = 871°C (1600°F)/0.5 hr
Plus
D = 593°C (1100°F)
E = 649°C (1200°F)
F = 704°C (1300°F)

"Failed out of gage.

31




TABLE 9. Heat Treatment Optimization Study Room Temperature Post-Creep Exposure

Tensile Test Results, Ti-25A1-10Nb-3V-1Mo

Ultimate
. 0.2% Yield Strength Strength Ductility
Stabilization/ : -

S/N Age Cycle MPa (kst) MP1  (ksi) % EL % RA
1 A 692.2 {100.4) 790.8 (114.7) 1.3 0.6
2 A Thread Failure
3 B 719.8 (104.4) 7874 (114.2) 0.5 0.6
4 B Thread Failure
5 C 730.9 (106.0) 8343 (121.0) 14 0.6
6 C 688.8 (99.9) 7619 1105 09 06
1 D 688.1 (>99.8) (1) —

2 D 680.5 (98.7) (2) (1074) 1.3 0.7
3 E 657.1 (>956.3) (1) —

4 E 697.8 (101.2) (3) — 1.3 1.9
5 F 748.8 (108.6) 835.0 (121.1) 0.7 38
6 F 724.0 (105.0) 748.1 (108.5) 1.3 29

Stabilization/Age Cycles

A, B, and C = 816°C (1500°F)/0.5 hr
Plus 8 hr at:
A = 593°C (1100°F)
B = 694°C (1200°F)
C = 704°C (1300°F)

D, E, and F = 871°C (1600°F)/0.5 hr
Plus 8 br at:
D = 593°C (1100°F)
E = 649°C (1200°F)
F = 704°C (1300°F)

(1) Radius failure prior to yield.
(2) Radius failure.
(3) Failed at yield.

Creep Exposure

All Received 379 MPa (55 ksi) to
0.5% Creep Followed By 100 hrs
Exposure at 138 MPa (20 ksi)

at 649°C (1200°F)

TABLE 10. Candidate 3, Ti-25Al-10Nb-3V-1Mo Notched Charpy Impact Results

Temperature  Impact Strength
S/N °C__(°F) Joules (ft-1b)
1 26 (79) 0.68 (0.5)
2 26 (i) 1.36 (1.0}
3 650 (1200) 352 (26.0)
4 650 (1200) 380 (28.0)
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TABLE 11. Candidate 3, Ti-25Al-10Nb-3V-1Mo Tensile Resuits
Temperature  0.2% Yield Strength  Ultimate Strength

S/N °C (°F) MPa  (ksi) MPa  (ksi) BEL %RA
1 26 (79) 720.5 (104.5) 817.1 (118.5) 1.3 3.7

2 26 (79) 7716 (111.9) 8894 (129.0) g 32

3 650 (1200) 468.9 (68.0) 650.2 (94.2) 133 23.1

4 650 (1200) 5523 (80.1) 6909 (100.2) 93 189

TABLE 12. Candidate 3, Ti-25Al1-10Nb-3V-1Mo Fracture Toughness Precracked Compact

Tension Specimens

Test
Temperature K,.C
S/N °C  (*F) MPa \/m (ks yin.)
1 RT — 21.3 (19.4)
2 RT — 21.2 (18.2}
3 315°C (600°F) 315 (28.6}
4 427°C_(800°F) 52.8 480)

TABLE 13. Candidate 3, Ti 25A1-10Nb-3V-1Mo Crcep Results Conditions 650°C
(1200°F), 379 MPa (55 ksi)
0.i% 02% 05% 1% Rupture
S/N (hr) (hr) (hr) (hr) (hr) % El. % RA
1 0.1 0.2 1.7 9.1 68.3 4.43 12.36
2 0 0.2 1.4 1.1 68.8 508 973

TABLE 14. Ti-25Al-10Nb-3V-1Mo Candidate 4 Tensile Test Resulis

Temperature 0.2% Yield Strength — Ultimate Strength  lhuctility
°c_ (%) MPa (kst) MPa__ (ksi) Kl RA
26 (79) 682.6 (99.0) 906.0 (131.4) 33 44
26 (79) 716.4 (103.9) 915.7 (132.8) 3. 6.5

204 (4000 544.3 (80.4) 882.6 (128.0) L1279

204 (400) 516.4 (74.9) 886.7 (125.7) 7.7 113

427 (800) 508.2 (73.7) 959.1 (139.1) 3.0 265

427 (800) 4999 (72.5) 928.0 (134.6} e IRG

538 (1000) 4723 {68.5) 803.9 (116.6) 128 33

538  (1000) 429.6 (62.3) 715.7 (112.5) 12.5 25

650  (1200) 432.3 (62.7) 690.9 (100.2) 133 022

650 _(1200) b - 7178 (104.1) 83 224




TABLE 15. Ti-24Al-11Nb Tensile Test Results

Temperature 0.2% Yield Strength Ultimate Strength Ductility

°C ___(°F) MPa (kst) MPa (ksi) %EL _%RA

26 (79) 5233 (75.9) 677.8 (98.3) 18 53

26 (79" 4944 (71.7) 663.3 (96.2) 23 32
204 (400) 3689 (53.5) 638.3 (92.7) 55 82
204 (400) 34438 (50.0) 624.7 (90.6) 78 116
427  (800) 297.2 (43.1) 756.4  (109.7) 273 349
427 (800) 311.7 (45.2) 7322 (106.2) 319 452
538 (1000) 274.4 (39.8) 590.2 (85.6) 211 282
538 (1000) 264.8 (38.4) 573.2 (83.2) 223 39.2
650 (1200)  255.0 37.0) 463.3 (67.2) 174 453
650 (1200) 2517 (36.5) 466.1 (67.6) 218 426

TABLE 16. Candidate 4, Ti-25A1-10Nb-3V-1Mo Notched Charpy Impact
Versus Temperature

Impact
Temperature Strength

°C (°F)  Joules  (ft-Ib)

26 (79) 2.7 2.0
26 (79) 2.7 (1.9)
26 {(79) 2.3 (1.7)
204 (400) 38 (2.8)
204 (400) 3.5 (2.6)
427 (800) 6.1 (4.5)
427 (800) 6.0 (4.4)
650  (1200) 20.4 (15.0)
650  (1200) 252 (18.5)

TABLE 17. Notched Charpy Impact Versus Temperature Ti-24Al-11Nb

Impact
Temperature Strength

°C (°F) _ Joules _ (ft-Ib)

26 79) 1.4 (L.0)

26 (79) 1.4 (1.0)

26 (79) 18 (1.3)
204 (400) 3.9 (2.9)
204 (400) 4.6 3.4)
427 (800) 3.8 (2.8)
427 (800) 14.2 (10.5)
427 (800) 173 (12.8)
427 (800) 15.6 (11.4)
650  (1200) 35.1 (26.0)
650  (1200) 324 (24.0)
650  (1200) 338 (25.0)
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TABLE 18. Candidate 4, Ti-25A1-10Nb-3V-1Mo Fracture Toughness

Test

Temperature Toughness

°C (°F) MPa \/m (ksi_\/in.)  Orientation'V

26 (77 16.39 (14.9)

26 n 14.63 (13.3) a

26 (77 16.17 (14.7) b

26 (717 15.18 {13.8) b

26 (il 16.06 (14.6) ¢
316 (600) 35.42 32.2) c?
427 (800) 4257 (38.7) c@
538  (1000) 62.81 (57.1) AR

Orientations are described in Figure 29.
2'Estimated value.
3'Test attempted, not plane strained.

TABLE 19. Fracture Toughness for Ti-24Al-11Nb

Test

Temperature Toughness

°C) °F) MPa \/m (ksi \/in.)
26 7 18.6 (16.9)
26 n 20.7 (18.8)
205 (400) 32.8 (29.8)
205 (400) 31.2 (28.4)
315 (600) 55.0 {50.0)(1!
315 (600) 51.3 (46.7)1
427 (800) - — @
427 (800) - - @

UEstimated value.
Test attempted, not plane strained.

TABLE 20. Ti-24Al-11Nb a/o Creep Results

Stress Temperature 0.1% 02% 05% 1.0%  Rupture
MPa (ksi) °C (°F) (hr) (hr) (hr) (hr) (hr) %EL  %RA
207.0 (30.0) 650 (1200) 0.1 0.5 6.1 274 544.7 125 14.2
207.0 (30.0) 650 (1200) 0.1 0.4 4.6 223 448.2 8.9 14.1
1720 (25.0) 540 (1000) 31.1 117.1 769.5 —_ >13171 0.81 —
1720 (2500 540  (1000) 33.1 1266 812.1 - >12125" 079 —
138.0 (20.0) 590 (1100) 6.1 289 3724 — >789.31 081 —
138.0 (20.0) 590 (1100) 5.3 244 3114 — >707.4Y 0.84 —
1379 20.0 605 (1125 — 1780 5500 —_ —_ — —
1379 20.0 605 (1125) — 206.0 524.0 — — — —
137.9 20.0 650 (1200) — 23.0 175.0 _ _ —_ —
137.9 20.0 650 (1200) — 43.0 179.0 — —_ — —

‘UNot ruptured, tests suspended.
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.

Did not rupture — suspended.
2)Discontinued.
@) Ruptured in radius.

TABLE 21. Candidate 4, Ti-25A1-10Nb-3V-1Mo a/o Creep Resulits

Stress Temperature 01% 02% 05% 1.0% Rupture
MPa _ (kst) (°C) _(°F) _ (hr) {hr) (hr) (hr) (hr) %EL  %RA
3800 (55.0) 650  (1200) <O.1 0.1 1.2 40 604 1.3 13.1
3800 (55.0) 650 (1200) <0.1 <0.1 05 38 478 14 14.8
4140 (60.0) 590 (1100) <O0.1 0.1 1.5 8.3 2936 69 18.4
4480 (65.0) 540  (1000) — 35 328 1603 14370 3.4 5.5
3100 (45.0) 650 (12000 0.1 0.4 30 156 2339 7.1 19
3800 (55.0) 540 (1000) 0.1 1275 3870 12925  28639'%Y @ _@
3450 (50.0) 590 (1100) 06 2.0 138 1707 8184 4.5 —&
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TABLE 22. Modulus of Elasticity Versus Temperature

Ti-24Al-1INb
Temperature Modulus

°C °F GPa PSI X 10°
21.11 70 106.180 154
93.33 200 104.801 15.2
204.44 400 102.733 14.9
315.56 600 100.664 14.6
426.67 800 97.906 14.2
537.718 1000 95.148 13.8
648.89 1200 91.011 13.2
760.00 1400 86.185 12.5
887.78 1630 81.359 11.8
926.67 1700 79.980 11.6
982.22 1800 77911 11.3
1037.78 1900 76.532 11.1
1093.33 2000 75.153 10.9

Ti-25A1-10Nb-3V- 1Mo

22.78 73
93.33 200
204.44 400
315.56 600
426.67 800
537.78 1000
648.89 1200
760.00 1400
§71.11 1600
926.67 1700
982.22 1800
1037.78 1200

100.664 14.6
99.285 14.4
97.906 14.2
95.148 13.8
93.080 13.5
89.632 13.0
86.185 12.5
82.738 12.0
78.601 11.4
76.532 11.1
74.464 10.8
68.948 10.0
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TABLE 27. Regression Fit Indicators For Strain Versus Life Plots

Standard
Temperature Stress Error of
°C (°F) Ratio R? Estimate
Ti-24Al1-11Nb
26 79 R= 00 0.9288 0.0582
R=-10 0.9288 0.0519
427 800 R= 00 0.8508 0.1211
R =-10 0.8553 0.3109
650 1200 R= 00 0.9699 0.0833
R =-10 0.8868 0.5543
Ti-25A1-10Nb-3V-1Mo
26 79 R = 0.0 0.9879 0.0231
R =-10 0.7323 0.2998
427 800 R= 00
R = -10*
650 1200 R = 00"
R = -1.0*

*Insufficient data for regression.

TABLE 28. Regression Fit Indicators For Energy Versus Life Plots

Standard
Temperature Error of
Stress Ratios R? Estimate
Ti-24Al-11Nb All Data Pooled 0.5295 1.0379
Ti-25A1-10Nb-3V-1Mo All Data Pooled 0.6881 4.9681
Ti-24Al-11Nb and
Ti-25A1-10Nb-3V- 1Mo Both Alloys Pooled 0.7011 9.2915
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TABLE 29. Candidate 4, Ti-25A1-10Nb-3V-1Mo Notched Low Cycle Fatigue
(Frequency = 0.17 Hz (10 cpm), R = 0.5, K, = 2.18)

Life Cycles to
Nominal Stress ~ Temperature 0.8 mm (1/32 in.)  Cycles to

MPa (ks1) °C (°F) Crack Failure
2758 40 650 (1200 83,759 83,469
310.3 45 650 (1200) 38,650 39,448
3448 50 650 (1200) 1,223 1,248
3103 45 427 (300) . 100,009 'V
379.2 55 427  (800) . 160.000
379.2 65 427 (800) * 44,778 @
379.2 65 427 (800) 144,500 144,663
379.2 65 26 (77 126,250 126,390
517.1 75 26 (77) * 29,008

Mechanically Conditioned Prior to Test

517.1 75 26 77 . 18,225 &
517.1 75 26 an * 8,578 W

Coated and HSSC

79.2 65 26 (17 TiN' 586
379.2 65 427 (800) TiN® 4,445
379.2 65 427 (800 TiN + HSSC® 4,475

= No crack found

‘U = Uploaded

2 = Thread failure

) = Conditioned at 427°C (800°F)/517.1 MPa (75 ksi)/120 second
peak load dwell, one cycle

) = Conditioned at 427°C (800°F)/517.1 MPa (75 ksi)/0.17 Hz
(10 cpm), one cycle

5) = Coated with TiN

%) = ASTM sea salt « 650°C (1200°F)/1-hour pretest thermal

cycle
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TABLE 30. Notched LCF for Ti-24Al-11Nb
(Frequency = 0.17 Hz (10 cpm), R = 0.05, K, = 2.18)

Nominal Stress Temperature Cycles to

MPa (hsi) °C__(°F) 08 mm Crack _Failure Comments
206.8 30 650 (1200) 2,000 2,976 1
206.8 30 650 (1200) 2,800 5,176 1
379.2 55 26 () 700 746 1
379.2 55 26 (77) 2,000 2,072 1
379.2 55 26 (7 9,400 9,978 2
379.2 56 26 (77) 5,000 5,301 2
3103 45 26 (17 133,940 142,712 3
3103 45 26 (77) 44,000 46,524 3
310.3 45 26 (77) 8,300 8,365 4
3103 45 26 (77) 152,000 160,309 4
379.2 55 26 (77) 27,800 29,335 4
379.2 55 26 (77 24,700 26,004 4
310.3 45 427  (800) 53,000 55,270 4
3103 15 427  (800) 100,000 106,009 4
379.2 55 427  (800) 36,000 38,342 4
379.2 55 427  (800) 7,700 8,178 4
275.8 40 650 (1200) 14,000 15,226 4
275.8 40 650 (1200) 3,460 3,642 4
206.9 30 650 (1200) 31,100 33,062 4
275.8 30 650 (1200} 52,000 52,899 4

1 - Aluminum slurry coating

2 - Baseline (uncoated} + coating diffusion cycle

3 - Prestressed, conditioned at 427°C (800°F)/620.6 MPa
(90 ksi)/0.17 Hz (10 cpm), § cycles

4 - Baseline, not coated

TABLE 31. Notched LCF for Ti-24Al-11Nb
(Frequency = 0.17 Hz (10 cpm), R = 0.05, K, = 2.18)

Nominal Stress Temperature

Surface Cycles to
MPa tksi) °C (°F) Treatment Failure
1379 30 650 (1200) HSSC'" 53,500 dnf uploaded
206.8 30 650  (1200) HSSC'! 2,694
206.8 30 650 (1200) HSSsC! 2,371
379.2 55 26 Vird) HSSsC! 172
379.2 55 26 (1M HSSC!Y 416
379.2 55 26 (717 HSSC/COATED 259

2)

379.2 55 26 (77  HSSC/COATED 191

2)

WHSSC = ASTM sea salt + 650°C (1200°F)/1hr pre-test thermal cycle.
IHSSC/Coated = ASTM sea sait applied to COATED specimens +
thermal cycle, (Coated with aluminum slurry.
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TABLE 32. Smooth Axial High Cycle Fatigue Results for Ti-24Al-11Nb

Maximum

“R" Temperature Stress Cycles to

K,  Ratio °C (°F) MPa (ksi)  Failure Remarks

10 0.05 286 (1) 5516 (80) 1.07ES
1.0 0.05 26 (1D 517.1 (75) 2.70E5
1.0 0.05 26 (77) 482.7 (70) 2.18E6
10 0.05 26 (T7) 448.2 (65) 9.66E6
1.0 0.05 26 (17) 4482 (65) 1.00E7 Did Not Fail

1.0 -1 26 (77) 482.7 (70) 3.08E4
1.0 -1 26 () 448.2  (65) 2.79E4
1.0 -1 26 (TN 379.2  (55) 5.32E4
1.0 -1 26 (TN 344.8 (50) 1.40E5
1.0 -1 26 (77) 3103 (45) 1.00E7 Did Not Fail

1.0 0.05 650 (1200) 413.7 (60) 9.70E5
1.0 0.05 650 (1200) 379.2 (55) 1.09E6
1.0 0.056 650 (1200) 379.2  (55) 3.67E6
1.0 0.056 650 (1200) 344.8 (50) 1.00E7 Did Not Fail
1.0 0.05 650 (1200) 3103 (45)'Y  1.00E7 Did Not Fail

10 -1 650 (1200) 413.7 (60) 2.96E4
1.0 -1 650 (1200) 413.7 (60) 2.67E5
1.0 -1 650 (1200) 3448 (50) 4.70E5
10 -1 650 (1200) 3103 (45) 2.10E6
1.0 -1 650 (1200) 275.8 (40) 1.00E7 Did Not Fail

‘'Not used in regression analysis

TABLE 33. Notched Axial High Cycle Fatigue Results for Ti-24Al-11Nb

Maximum
“R" Temperature Stress Cyeles to
K, Ratio °C (°F) MPa  (ksi) Failure Remarks

216 005 26 (77) 379.2  (55) 2.27E4
2.16 0.05 26 (77) 344.8 (50) 3.04E4
216  0.05 26 (1D 3103 (45) 8.70E6
2.16  0.05 26 (77) 2758 (40) 1.06E6
216 0.05 26 (77) 275.8 (40) 2.80E6 Did Not Fail
216 005 26 (7D 2413 (35) 1.00E7 Did Not Fail

216  0.05 650 (1200} 3103  (45) 1.46E4
216 0.05 650 (1200) 2758 (40) 2.93E6
216 0.05 650 (1200) 2413 (35) 1.00E7 Did Not Fail
216  0.05 650 (1200) 206.9 (300" 1LOOE7 Did Not Fail

2.16  0.05 427 (800) 3448 (50) 2.18E4
2.16  0.05 427 (800) 3103 (45) 1.09E6
2.16 0.05 427 (800) 3448 (50)? 1.00E7  Did Not Fail
2.16 005 427 (800) 3103 (45" 1.00E7T  Did Not Fail

("'Not used in regression analysis
(2'Pregtressed at: 620 MPa (90 ksi) (max), 427°C (800°F}, R = 005,
0.17 Hz (10 cpm), 5 to 7 cycles.
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TABLE 34. Smooth and Notched Axial High Cycle Fatigue Results for
Ti-25A1-10Nb-3V-1Mo

Maximum

“RY Temperature Stress Cycles to
K,  Ratio °C__(°F) MPa  (ksi) Failure Remarks
1.0 -1 26 (77) 517.1  (75) 3.23E4
1.0 -1 26 (77) 482.7 (70) 1.98E5
1.0 -1 26 (T 4482 (65)" 3.22E6  Thread Failure
1.0 -1 26 (77) 448.2 (65) 6.90E6
1.0 -1 26 (17) 448.2 (65) 1.00E7 Did Not Fail
1.0 -1 26 (77) 413.7 (60) 1.00E7 Did Not Fail
1.0 -1 650 (1200) 517.1  (75) J.00E5
1.0 -1 650 (1200) 448.2 (65) 1.07E6
1.0 -1 650 (1200) 448.2 (65) 3.86E6
1.0 -1 650 (1200) 413.7 (60) 1.00E7 Did Not Fail
1.0 -1 650 (12000 3103 45V 1.00E7  Did Not Fail

2.16  0.05 26 (7D 310.3 (45) 1.70E5
2.16 005 26 (7D 2758 (40) 1.00E7 Did Not Fail

2.16  0.05 650 (1200) 3448 (50) 8.20E3
2.16  0.05 650 (1200) 310.3  (45) 7.79E5
2.16 005 650 (1200) 2758 (40) 1.00E7 Did Not Fail

(UNot used in regression analysis

TABLE 35. Regression Analysis Summary For Axial High Cycle Fatigue Results

107 Cycle Fatigue

Alloy Strength MDPa (kst)
- Condition Ti-24Al-1INb  Mean  Min  (-875%)
R = 0.05, 25°C (7T7°F), K, = 1.0 448.2 (65.0) 435.1 (63.1)
R = 1.0, 25°C (T7°F), K, = 1.0 281.3 (40.8) 219.3 (31.8)
R = 0.05, 650°C (1200°F), K = 1.0 353.7 (51.3) 299.2 (43.4)
R = 1.0, 650°C (1200°F), K, = 1.0 275.1 (39.9) 2289 (33.2)
R ~ 0.05, 25°C (77°F), K, = 2.16 250.3 (36.3) 193.1 (28.0)
R = 0.05, 650°C (1200°F), K, = 2.16 247.5 (35.9) - (1)
R = 0.05, 427°C (800°F), K, = 2.16 — (1 — (n

Alloy - Ti-25A1-10Nb-3V-1Mo

R = -10, 25°C (7T°F). K, = 1.0 429.6 (62.3) 382.0 (55.4)
R = -1.0, 25°C (77°F). K; = 1.0 429.6 (62.3) 382.0 (55.4)
R = 0.05, 25°C (77°F), K, = 2.16 2758 (40.0) —_ (98]
R = 0.05, 650°C (1200°F), K, = 2.16 279.2 (°9.5) — (1)

(1) Insufficient data to calculate mean or minimum life
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TABLE 36. Regression Analysis Summary for HCF Mean Lines

Standard
Temperature Stress Error of
°C (°F) Ratio R? Estimate
Ti-24Al-11Nb
Smooth 26 79 R = 005 0.9902 0.1029
R =~ -10 0.7502 0.6145
650 1200 R = 0.05 0.8075 0.7164
R=-10 0.8722 0.3933
Notched 26 79 R = 005 0.6736 0.7544
427 800 R = 0.05*
650 1200 R = 005 0.8354 0.8648
Ti-25A1-10Nb-3V-1Mo
Smooth 26 79 R = 0.05 0.9902 0.1029
R =-10 0.8442 0.5264
650 1200 R = 005
R =-10 0.8740 0.2883
Smooth 26 79 R = 0.05*
R=-10 0.9879 0.0231
427 800 R = 005 0.7323 0.2998
R =-10
650 1200 R = 005 0.9501 0.4940
R=-10

*Insufficient data for regression
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TABLE 37. Load-Controlled TMF Results for Ti-24A1-11Nb

38° to 650°C (100° to 1200°F)

Strain Half Life Stress Cycles
Strain Range Maximum Minimum Frequency Cycle to
Ratio % MPa (ksi) MPa (ksi) cpm Type 'V Failure
~10 0.6 408.4 -152.4 1.0 I 9095 @
(59.2) (-22.1)
-1.0 08 472.3 ~-271.7 0.5 I 19482
(68.5) (—39.4)
-10 0.6 4215 -143.4 0.5 I 20690
(62.0) (—20.8)
-1.0 1.0 593.6 -330.3 0.5 I 201
(86.1) (—47.9)
-1.0 08 517.8 -231.7 0.5 [ 1933
(75.1) (—-33.6)
~-1.0 08 242.0 ~504.0 0.5 I 776
(35.1) (-73.1)
-10 0.6 1489 -422.0 0.5 I 2466
(21.6) (-61.2)
-1.0 1.0 336.5 -604.7 0.5 i 369
(48.8) (-871.7)
0.0 0.5 443.0 -26.0 0.5 1 12383
(62.8) (~-3.77
Hot Salt Stress Corrosion (HSSC) Tests ¥
-1.0 0.6 344.1 -215.8 0.5 I 1145
(49.9) (-31.3)
-1.0 0.4 2289 -124.8 0.5 1 34126
(33.2) (-18.1)
-1.0 0.8 446.1 -287.5 0.5 I 397
(67.6) (-41.7)
-1.0 1.6 237.9 -326.1 0.5 il 59
(34.5) (-47.3)
-1.0 0.6 227.5 -329.6 05 I 421
(33.0) (—-47.8)
-1.0 08 308.9 ~436.4 0.5 I 33
(44.8) (—63.3)
D1 = Qut-of-Phase I = In-Phase

2} Thread failure, not used in hysteretic energy analysis

‘) Did not fail — Test suspended. Data used in
hysteretic energy analyasis

4) HSSC data not used in hysteretic energy analysis




TABLE 38. Load-Controlled TMF Results for Ti-25A1-10Nb-3V-1Mo
38° to 650°C (100° to 1200°F)
Strain Half Life Stress Cycles
Strain Range Maximum Minimum Frequency Cycle to
Ratio % MPa (ksi) MPa (ksi) cpm Type Failure
-1.0 0.6 399.9 —-200.6 1.0 I 367962
(58.0) (-29.1)
~-10 0.8 614.3 -186.2 0.5 I 2677
(89.1) {(~-27.0)
-1.0 1.0 703.3 -286.1 0.5 1 767
(102.0) (—41.5)
-1.0 1.2 408.2 -768.1 0.5 II 461
(59.2) (—111.4)
-1.0 10 88.9 -885.3 0.5 11 201732
(12.9) (—128.4)
0.0 0.65 619.8 -254 0.5 I 2542
(89.9) (-3.69)
U1 = Out-of-Phase 1I = In-Phase

{2) Did not fail — Test suspended. Data used in
hysteretic energy analysis
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TABLE 39. Hysteretic Energy Results-Load Controlled TMF

Inelastic Tensile Hysteretic
Strain Stress Energy
% MPa (ksi) MPa (ksi)

Ti-24Al-11Nb:
N~ A(AWP | A = 61660,
B = -1.362, R?<= 0.845

1.262E-02 427.5 5.3921
(62.0) (0.782)
1.057E-01 593.6 34.474
(81.6) (9.105)
4.325E-02 517.8 22.408
(75.1) (3.250)
4.325E-02 242.0 10.466
(35.1) (1.518)
1.262E-02 1489 1.882
(35.1) (0.273)
1.057E-01 336.5 35.543
(48.8) (5.155)
5.614E-03 433.0 2.427
(62.8) (0.352)

Ti-25A1-10Nb-3V-1Mo:
N= A(AW)B , A = 83370,
B = -1.227, R?= 0824

6.381E-03 399.9 2.551
(68.0) (0.370)
2.652E-02 614.3 16.299
(89.2) (2.364)
7.457E-02 703.3 652.463
(102.1) (7.609)
1.598E-01 408.2 65.177
(59.2) (9.453)
7.457E-02 889 6.605
(12.8) (0.958)
9.537E-03 619.8 5.909
(89.9) (0.857)
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Step 1. a,- BForging
(Full-Size Pancake)

Step 2. p Anneal ( g+ 23.6°C)
Cooling Rate Study:
» Cooling Tower

Step 3. B Anneal Plus

Selected Cooling Rate

on Bar for Stabilization
Study

Step 4.
Stabilization/Age
Cycle Study

Step 5. Select

Heat
Treatment

Figure 5. Selection of Beta Anneal Cooling Rate and Stabilization Cycle
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\- Gradient Strip

Specimen

' Thermocouple No. C001

Slot For
Strip Specimen

i

S~
Thermocouple No. C006

Thermocouple Holes

Figure 6. Tower Cooling Fixture for Cooling Rate Response Study
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Figure 7. Strip Chart From Cooling Rate Study
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Figure 11.

Pancake Appearcnce Typical for Both Alloys

Fryure 12

Planar Fracture Surface With Material Flaking Off Ahead of Wire EDM
in As Forged (Beta) Te24A0-1TNb Pancake
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EDM Wire —/>b

Fractured
Surface

Figure 13. Schematic Diagram of EDM Wire Path and Pancake Fracture. Pancake
Fractured When Wire Cut Reached Pancake Center
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100pm

100pm

Heat Treated

Nb Beta Forged and Fully

Figure 17. Microstructure of Ti-24Al-11




Figure 18. Microstructure of Ti-25Al-10Nb-3V-1Mo Beta Forged and Fully Heat Treated
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o5 |— (5] T+25AF10Nb-3V-1Mo
/A Ti24AF1INb
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Figure 23. 0.2 Percent Yield Strength Versus Temperature for 7i-25Al-10Nb-3V-1Mo and
Ti-24Al-11Nb
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Figure 24. Ultimate Tensile Strength Versus Temperature for Ti-25Al-10Nb-3V-1Mo and
Ti-24Al-11Nb

72




50 W,
Y Elongation
A Ti-25A1-10Nb-3V-1Mo
” [ Ti-24A-11Nb 3
. Cd
Ductility - » A
20 A
10
0 | ] l
0 200 400 600 800 1000 1200 1400
Temperature - °F
I I 1 I I | | |
0 100 200 300 400 500 600 700

Temperature - °C
Figure 25. Elongation Versus Temperature for Ti-25Al-10Nb-3V-1Mo ana Ti-24Al-11Nb
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Figure 26. Reduction of Area Versus Temperature for Ti-25Al-10Nb-3V-1Mo and Ti-24Al-
I1INb
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Figure 27. Impact Strength Versus Temperature
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Figure 28. Fracture Toughness for Ti-25Al-10Nb-3V-1Mo, Candidate 4
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Figure 30. Ti-24Al-11Nb Fracture Toughness Screening Test Results
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Figure 31. Ti-24Al-lINb Rupture Model
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Ln(Time) = b0 + piStress ¥ b2 Coefficients
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1000 — Ln(Time) = b0 + b1'T + b2/T + b3'Stress/T
| Where T = Temperature (K)
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Figure 33. Ti-25Al-10Nb-3V-1Mo Rupture Model

1000 [ Notes:

- Ln(Time) = b0 + ti'T + b2/T + b3'Stress/T  Coefficients
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Figure 34. Ti-25Al-10Nb-3V-1Mo 0.5 Percent Creep Model
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Figure 35. Dynamic Modulus Versus Temperature
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10mm

oo Adpha 2Beta Forged and Beta Annealed Te25A0 10N SV Mo Eyoaned 0 r
Beta Gramn Structure at 31870 600°F)T Shoncing Predomenate s Transera e
Cheacage (laft) and at 650°C (12000 F Mixed Inter-Transgrana ar Froctoon
Riehts From Toughness Specime s




1mm

Foure 380 Macro Views From 204°C (400°F) Left, and 316°C (600°F) Bight, of Ti-244l-
11Nb Fracture Toughness Tests. Note Loose Flakes on Surfaces
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to Right 416
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+

-1INb Fracture Toughness Specimens From L

Ti-24Al

Figure 40.

Visihle

7°C (800°F) Tests. Deep Furrowing is

2

and 4




Figure 41. Room Temperature Fracture Toughness Surface From Ti-24Al-11Nb

Figure 42. Intermediate and High Magnification Views of Fracture Surface From
Ti-24Al-11Nb at Room Temperature. Note Ductile Tearing Surrounding Quasi-
Cleavage Areas




imm imm

Figure 43, Ti-24Al-1INb Tensile Fractures Exhibiting a Transition in Fracture Mode Fron
204°C (400°F) on Left and 427°C (800°F) on Right. Secondary Cracking s
Present Along Gage Section on Right. There is None on Left




1mm

Figure 44, Tensile Fractures at (From Left) 204°, 427°, and 650°C (4060°, 8006° and
1200°F). Note Extensive Cracking Along Gage Section of Ti-25A1-10Nb-3V-1Mo
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10mm

Figure 46. Left, Extensive Secondary Cracking in Ti-24Al-1INb Creep Test, 230 Hours at
650°C/207 MPa (1200°F/30 ksi). Right, Oxygen Embrittlement (n Section
Through Ti-25Al-10Nb-3V-1Mo Creep Specimen, 234 Hours at 650°C/310 MPa
(1200°F/45 ksi). Ti-24Al-11Nb Sections are Identical to Ti-25Al-10Nb-3V-1Mo
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Figure 47. Details of Surface Oxide, Oxygen Embrittlement Layer, and Crack Propagating
into Substrate of Ti-25Al-10Nb-3V-1Mo Creep Specimen. Test Conducted at
650°C/310 MPa (1200°F/45 KSI) for 234 Hours

No. 3 Centerdil gg'g
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Identification ¢ ra T - N - - <] ¢ — ¢
0.76 x 45° L—'A 6.4
Chamfer ¢6.3
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10.4 519 R ¢
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Both Ends I %8% At Center of Gage Only.

Note: All Dimensions Are in mm.

Figure 48. Smooth LCF Specimen, K, = 1.0
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Figure 49. Fully Reversed Strain Cycle, R, = -1.0
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Frgure 50. All Tensile Strain Cycle, R, = 0
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Figure 51. All Tensile Strain Cycle With Peak Strain Dwell
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Figure 53. Smooth HCF Specimen, K, = 1.0
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Figure 54. Notched HCF Specimen, K, = 2.16

94




Total
Strain
Range -
%

Figure 55.

Total
Strain
Range -
%
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oot Cood ot Coo

0
100 1,000 10,000 100,000 1,000,000
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Mean Stress Effects of Smooth LCF on Ti-24Al-11INb at 25°C (77°F)
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Figure 56. Mean Stress Effects of Smooth LCF on Ti-24Al-11Nb at 427°C (800°F)
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Test Information:
Axial Strain Control - LCF at 0.17Hz and 650°C (1200°F)

O Reg =00

. Rs = ‘10
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Figure 57. Mean Stress Effects of Smooth LCF on Ti-24Al-11Nb at 650°C (1200°F)
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Figure 58. Mean Stress Effects of Smooth LCF on Ti-25Al-10Nb-3V-1Mo at 25°C (77°F)
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ORg =00
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Figure 59. Mean Stress Effects of Smooth LCF on Ti-25Al-10Nb-3V-1Mo at 427°C (800°F)
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Axial Strain Control - LCF at 0.17Hz and 650°C (1200°F);
O Rg =00
@R, --10

| | e il
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Figure 60. Mean Stress Effects of Smooth LCF on Ti-25Al-10Nb-3V-1Mo at 650°C
(1200°F)
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| Test Information: N
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LCF Cycles to Failure

Figure 61. Comparison of Ti-24Al-1INb Versus Ti-25Al-10Nb-3V-1Mo, Smooth LCF at
25°C (77°F), R, =0
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LCF Cycles to Failure

Figure 62. Comparison of Ti-24Al-11Nb Versus Ti-25Al-10Nb-3V-1Mo, Smooth LCF at
427°C (800°F), R, = 0
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Figure 63. Comparison of Ti-24Al-11Nb Versus Ti-25Al-10Nb-3V-1Mo, Smooth LCF at
650°C (1200°F), R, =0
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Figure 64. Conparison of Ti-24Al-1INb Versus Ti-25Al-10Nb-3V-1Mo, Smooth LCF at
25°C (77°F), R, = 1.0
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Figure 65. Comparison of Ti-24Al-11INb Versus Ti-25Al-10Nb-3V-1Mo, Smooth LCF at
427°C (800°F), R, = -1.0
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Figure 66. Comparison of Ti-24Al-11Nb Versus Ti-2541-10Nb-3V-1Mo, Smooth LCF at
650°C (1200°F), R, = ~1.0

100




1500 y—
]
1000 —
— O
Stress |
Range -
.230 [~ Legend
- 0) (R =-10
OR =00
400 (1t | | P ) .
0.004 0.01 0.1 0.4

inelastic Strain - =

Figure 67. Inelastic Strain Versus Cyclic Stress Range, Ti-25Al-10Nb-3V-1Mo at 26°C
(80°F), 0.17 Hz
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Figure 68. Inelastic Strain Versus Cyclic Stress Range, Ti-25Al-10Nb-3V-1Mo at 427°C
(800°F), 0.17 Hz
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Figure 69. Inelastic Strain Versus Cyclic Stress Range, Ti-25Al-10Nb-3V-1Mo at 650°C
(1200°F), 0.17 Hz
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Figure 70. Inelastic Strain Versus Cyclic Stress Range, Ti-24Al-11Nb at 26°C (80°F)
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Figure 71. Inelastic Strain Versus Cyclic Stress Range, Ti-24Al-11Nb at 427°C (800°F)
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Figure 72. Inelastic Strain Versus Cyclic Stress Range, Ti-24Al-11Nb at 650°C (1200°F)
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Figure 73. Hysteretic Energy Versus Life, Smooth LCF of Ti-24Al-11Nb

3.0

LI

1.0

1

Hysteretic
Energy -
MPa 0.1

T

U

T

Test Information:

© 25°C (77°F)
il

Controlled Strain LCF at 0.17HZ
Rg = -1.0 and 0.0

(-] 650°C (1200°F)
@ 425°C (800°F)

MERI ]

C Ul

|

108

muaitl|

-
(=]
~N

10°

104
Cycles to Failure

108

108

Figure 74. Hysteretic Energy Versus Life, Smooth LCF of Ti-25Al-10Nb-3V-1Mo
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Figure 75. Hysteretic Energy Versus Life, Smooth LCF, Ti-25Al-10Nb-3V-IMo and
Ti-24Al-11Nb

10°

1055 E’

r-
105 |=
10* =

Predicted —
Lite ™
E

] Ti-25A-10Nb-3V-1Mo

102
O Ti-24AH11ND

10" Nt u 11| a1 1 e il
10" 102 10° 104 108 1055
Actual Life

Figure 76. Actual Versus Predicted Life, Ti-25Al-10Nb-3V-1Mo and Ti-24Al-11Nb
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Figure 77. Actual Versus Predicted Life, Ti-25Al-10Nb-3V-1Mo
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Figure 78. Actual Versus Predicted Life, Ti-24Al-11Nb
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Figure 79. Ti-25Ai-10Nb-3V-1Mo Notched LCF Effects of Temperature
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Tigure 80. Ti-25Al-10Nb-3V-1Mo Notched LCF TiN Coated
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Figure 81. Ti-24Al-11Nb Notched LCF Effects of Temperature
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Figure 82. Ti-24Al-11Nb Notched LCF Effects of Coating
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Figure 83. Ti-24Al-11Nb Notched LCF Effects of Hot Salt Stress Corrosion
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Figure 84. Effects of Temperature on Ti-24Al-11Nb, Smooth HCF at R = -1, K, = 1.0
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Figure 85. Effects of Temperature on Ti-24Al-11Nb, Smooth HCF at R = 0.05, K, = 1.0
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Figure 86. Effects of Temperature on Ti-24Al-11Nb, Notched HCF at R = 0.05, K, = 2.16
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Figure 88. Effects of Prestressing on Ti-24Al-11Nb, Notched HCF at R = 0.05, K, = 2.16
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Figure 89. Effects of Temperature on Ti-25Al-10Nb-3V-1Mo, Smooth HCF at R = -1,
K,=10
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Figure 90. Effects of Temperature on Ti-25Al-10Nb-3V-1Mo, Notched HCF at R = 0.05,
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113




90— Legend:
600 ;— @ Ti-24A-11Nb Data
8ol— @ Ti-25Ai-10Nb-3V-1Mo Data
R=005 T =26°C K= 2.16
70— 500 F—
-~
Alternating Alternating .. S
Stress - 60 Stress - - ~—
A Sy,
ksi MPa 400 }— — o
e
50— R
sol— 300 +—
sol— il oot o e
10 10° 10° 10’

Cycles to Failure

Figure 92. Notched LCF, Ti-25Al-10Nb-3V-1Mo Versus Ti-24Al-1INb at R = 0.05,
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Figure 93. Smooth HCF, Ti-25Al-10Nb-3V-1Mo Versus Ti-24Al-1INb at R=~1, K, = 1.0
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Figure 94. Notched HCF of Ti-25Al-10Nb-3V-1Mo
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Figure 95. Significant Inelastic Strain Observed in 26°C (80°F) Ti-24Al-11Nb Strain
Controlled LCF Test. Conditions: Ae, = 1.2 Percent, Initial Ag; = 0.24
Percent, Initial ©,,,, =627 MPa (91 ksi)

116




4836 5006
356 990

' //// /7650
V

Figure 96. Cyclic Hardening Observed With Ti-24Al-11Nb at 427°C, R = —1.0,
Ag, = I Percent

11




WwadLdd 80 = gwq ‘00=Y ‘Dol8F 10 QNII-IVFG-1L U pa043sqQ Suruapivpy Q.&?A.U pup uonoILIAY $S3LS uva L6 amy

i,
iy

! + OOF
TB.&?&.& see'st feevor | 432 § oyiy oo

85'62 S50'ZZ ogv'el ogrs | 002

118




(@) Mag: 25X

Figure 98. Fracture Surface Fdge (Upper Right in Both Photographs) of LCE Specimen
Tested at 630°C (1200°F, Shouing Oxide Spalling and Secondary Cracking at
Scale Crazing in Ti-25A1-10Nb-3V-1My
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10 um a

Figure 99. SEM Examination of Oxide and Sublavers (From Previous Figure) Showing
Cracking Perpendicular to (a) and Parallel With (b) Stress Axis
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HV 393.3 (509gm)

Figure 100. Vickers Hardness of Oxygen Embrittled Surface Layer and Substrate Below in
Ti-2541-10Nb-3V-1Mo LCF Specimen Tested at 650°C (1200°F)
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Figure 101. Remaining Life, Notched LCF Ti-24Al-1INb at 427°C (800°F)
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Figure 102. Remaining Life, Notched LCF Ti-25Al-10Nb-3V-1Mo at 427°C (800°F)
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1mm

Figure 103. Room Temperature LCF Origin (White Arrow) and Arrest Mark (Black
Arrows, Probably Critical Crack Depth) From Notched LCF Test of
Ti-24Al-1INb
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[ hetatt 1mm

Figure 104 Critical Crack Depths are Vistble in 650°C (1200°F, Lept: and 42770 2w 7]
Ti-24A1-1INb Notched LCF Fractures Dotted Line s Just Berond Crock
Front
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Figure 105. Remaining Life, Notched LCF Ti-24Al-11Nb at 26°C (80°F)
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Figure 106 Surfeee Layer at Origin (Top) and Early Appearance of thade Seale Crazing
tBottamy on Specimen From Precious Figure
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Fugure 108, Nulched LCE Coated Specimens
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Figure 109. Ti-25Al-10Nb-3V-1Mo/TiN Coating Nodules




Figure 110. Compact Type (CT) Specimen
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Figure 114. Effects of Temperature, Ti-24Al-1INb at R = 0.1, 120~Second Duwell
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Figure 115. Effects of Temperature, Ti-24Al-11Nb at R= 0.1, 0.17 Hz
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Figure 116. Effects of Temperature, Ti-25Al-10Nb-3V-IMo, at R = 0.1, 0.17 Hz

138




AK - MPaim
2 5 10 2 5 100 2 5 1000

10.2 1 | 1
TTTIT CTET R
- SPEC NO symBoL __J1¢"
L. =
N 7AN4582 8 =
TAN426S =
TAN4573 4 -1
10° =
: —
gaund 1
- ) g
— ! —410?
B 650°C ! =
L . : =
B , 4271°C N
104 = p .
— !
= / ‘ 7
e /
L K -4 10®
= , =
5 / =
-

. —
daofdn - infcycle 100 f— 4 m dafdn - mm/cycle
— 1 -

— )
f— 1
n 10*
= =
=
- =
]
100 =
— / 0, -
- ,I, 26°C
[
™ it 1 ot 104
T K
X .
A ' —
it ) g
! —
107 = X
— ! =
- 1
—
t
= — 10
I~ =
10° [ | lll““ [ l“““ [ ll”“
1 2 § 10 2 5 100 2 S5 1000
AK - ksi fin.
HYPERBOLIC SINE MODEL COEFFICIENTS
Y= Cl » SINNIC2 & (X + C3)) + C4
WHERE Y= L0GIda/dN} AND X=LOGlaK}

CURvVE £YHBOL (X (2 8] X s K RANLF TS [ 143
1 v} 0.7000 13.2580 ~0.6630 -5.5200 [ 4.02 . 4.85 1 6 0.9435 7.0991
2 [V} 0.7000 2.37%0 -0.9720 -6.1010 { 2.88 . 12.11) 38 0.394) 0.0S85
3 - 0.7000 4.8190 -0.8240 -5.1210 { 2.64 ., 7.19 1 23 0.9936 0.0426

TOTAL RSQRD = 0.9904 STD.ERROR.EST.= 0.0S38
METRIC CONVERSIONS
Cl METRIC = C1 ENGLISM CZ METRIC = C2 ENOLISH
C3 METRIC = C3 ENGLISH - 0.04093S C4 METRIC = C4 ENGLISH + 1.40483
CURVE SYMeoL SPEC NO MATER[AL TEMP ATH FREQ R TYPE THIK REMARKS P/R
1 [w] TAN4S82 Ti2411 (44 AIR 2012 R:=0.7 nCT L4907 1.186
2 o TAN4265 TI 24-11 B800F Al 10 CPH R=.7 ner .37 0.914
3 A TAN4ST3 Tl 24-11 1200F AIR 10 CPH Rz.? HCY  .375 11 24-14 0.978

Figure 117. Effects of Temperature, Ti-24Al-1INb at R = 0.7
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Figure 118. Effects of Temperature, Ti-25Al-10Nb-3V-1Mo, at R = 0.7, 0.17 H:z
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Figure 119. Effects of Stress Ratio, Ti-24Al-11Nb, 26°C (80°F)
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Figure 120. Effects of Stress Ratio, Ti-25Al-10Nb-3V-1Mo, 26°C (80°F), 0.17 H:
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Figure 121. Stress Ratio Model Coefficient for Constant C1 Versus Stress Ratio
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Figure 123. Stress Ratio Model Coefficient for Constant C3 Versus Stress Ratio
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Figure 124. Stress Ratio Model Coefficient for Constant C4 Versus Stress Ratio
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Figure 125. Stress Ratio Model Demonstration for Ti-24Al-1INb at 427°C (800°F) and 0.17
H:z
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Figure 126. Effects of Stress Ratio on Ti-25Al-10Nb-3V-1Mo at 427°C (800°F) and 0.17 H:
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Figure 127. Effects of Stress Ratio on Ti-24Al-1INb at 650°C (1200°F) and 0.17 Hz
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Figure 128. Effects of Stress Ratio on Ti-25A1-10Nb-3V-1Mo at 650°C (1200°F) and 0.17
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Figure 129, Effects of Frequency on Ti-24Al-11Nb at 26°C (80°F), R = 0.1
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Figure 130. Effects of Frequency on Ti-25Al-10Nb-3V-1Mo at 26°C (80°F), R = 0.1
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Figure 131. Effects of Frequency on Ti-24Al-11Nb at 427°C (800°F), R = 0.1
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Figure 132. Effects of Frequency on Ti-25Al1-10Nb-3V-1Mo at 427°C (800°F), R = 0.1
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Figure 133. Effects of Frequency on Ti-24Al-11Nb at 650°C (1200°F), R = 0.1
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Figure 134. Effects of Frequency on Ti-25Al-10Nb-3V-1Mo at 650°C ( 1200°F), R = 0.1
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Figure 135. Alloy Comparison at R = 0.1, 20 Hz, and 26°C (80°F)
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Figure 136. Alloy Comparison at R = 0.1, 0.17 Hz, and 26°C (80°F)
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Figure 137. Alloy Comparison at R = 0.7 and 26°C (80°F)
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Figure 138. Alloy Comparison at R = 0.1, 20 Hz, and 427°C (800°F)
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Figure 139. Alloy Comparison at R = 0.1, 0.17 Hz, and 427°C (800°F)
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Figure 140. Alloy Comparison at R = 0.7, 0.17 Hz, and 427°C (800°F)
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Figure 141. Alloy Comparison at R = 0.1, 20 Hz, and 650°C (1200°F)
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Figure 142. Alloy Comparison at R = 0.1, 20 Hz, and 650°C (1200°F)
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Figure 143. Alloy Comparison at R = 0.7, 0.17 Hz, and 650°C (1200°F)
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Figure 144. Threshold Crack Growth Rate Material Comparison, Ti-24Al-11Nb Versus
Ti-25A1-10Nb-3V-1Mo at 26°C (80°F), R = 0.1, and 20 Hz
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Figure 145. Threshold Crack Growth Rate Material Comparison, Ti-24Al-11Nb Versus
Ti-25Al-10Nb-3V-1Mo at 26°C (80°F), R = 0.7, and 20 H:z
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Figure 146. Threshold Crack Growth Rate Material Comparison, Ti-24Al-11Nb Versus
Ti-25A1-10Nb-3V-1Mo at 650°C (1200°F), R = 0.1, and 20 H:
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Figure 147. Threshold Crack Growth Rate Material Comparison, Ti-24Al-1INb Versus
Ti-25A1-10Nb-3V-1Mo at 650°C (1200°F), R = 0.7, and 20 Hz
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Figure 148. Threshold Crack Growth Rate Temperature Comparison, Ti-24Al-1INb at
R=0.1 and 20 H:
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Figure 149. Threshold Crack Growth Rate Temperature Comparison, Ti-24Al-1INb at
R =0.7 and 20 H:
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Figure 151. Threshold Crack Growth Rate Temperature Comparison, Ti-25Al-10Nb-3V-1Mo
at R=0.7 and 20 Hz
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Figure 152. Threshold Crack Growth Rate Stress Ratio Effect, Ti-24Al-1INb at 26°C
(80°F) and 20 H:
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Figure 153. Threshold Crack Growth Rate Stress Ratio Effect, Ti-24Al-11Nb at 427°C

(800°F) and 20 H:z
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Figure 154. Threshold Crack Growth Rate Stress Ratio Effect, Ti-24Al-11Nb at 650°C

(1200°F) and 20 Hz
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Figure 155. Threshold Crack Growth Rate Stress Ratio Effect, Ti-25Al-10Nb-3V-1Mo at
26°C (80°F) and 20 H:
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Figure 157. Threshold Crack Growth Rate Stress Ratio Comparison After Closure

Correction, Ti-24Al-11Nb at 26°C (80°F) and 20 Hz
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Figure 158. Threshold Crack Growth Rate Stress Ratio Comparison After Closure

Correction, Ti-24Al-11Nb at 427°C (800°F) and 20 H:
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Threshold Crack Growth Rate Stress Ratio Comparison After Closure
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Figure 160. Threshold Crack Growth Rate Stress Ratio Comparison After Closure,
Ti-2541-10Nb-3V-1Mo at 26°C (80°F) and 20 H:
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Threshold Crack Growth Rate Stress Ratio Comparison After Closure,

Ti-25Al-10Nb-3V-1Mo at 650°C (1200°F) and 20 H:
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Effect of Crack Length on Near Threshold Crack Growth Rates,
Ti-25A1-10Nb-3V-1Mo at 26°C (80°F) and 20 H:
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Figure 163. Effect of Crack Length on Closure-Corrected Crack Growth Rates in the Near
Threshold Region, Ti-25Al-10Nb-3V-1Mo at 26°C (80°F), R = 0.1, and 20 H:
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Figure 164. Comparison of Crack Growth Rates From K-Decreasing and Constant-Load
Tests, Ti-24Al-11Nb at 26°C (80°F), R = 0.1, and 20 H:
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Figure 165. Comparison of Crack Growth Rates From K-Decreasing and Constant-Load

Tests, Ti-24Al-11Nb at 26°C (80°F), R = 0.7, and 20 H:
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Figure 166. Comparison of Crack Growth Rates From K-Decreasing and Constant-Load
Tests, Ti-24Al-11Nb at 650°C (1200°F), R = 0.1, and 20 Hz
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Figure 167. Comparison of Crack Growth Rates From K-Decreasing and Constant Load
Tests, Ti-24Al-1I1Nb at 650°C (1200°F), R = 0.7, and 20 H:

187




0.762 X 45° Chamfer

12.7-20UNJF-2A
12.9
[ 12,4 Rod

5.10 .
5,05 Dia

6.4 Dia at Center
6.3 of Gage Only

Dimensions Are in mm.

Figure 168. Load Control TMF Specimen

12.7 A.
12.4 Dia

_____ ¢ ————
| | |
HE '
- + - - €
|
] ! ]
X 129 i
147 124
13.7
Ends
70.1 o
69.6

188




Mechanical
Strain 0 >~ .
Range - % \ \

05 | l
(@
08—
0.6]
04—
Mechanical
Strain
Range - %
02—
0
02 | | | |
0 200 400 600 800
(b) Temperature - C

Figure 169. Out-of-Phase Cycle (Type I) with (a) R = —1.0 and (b) R = 0.0
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Figure 171. Load Control TMF Results of Ti-24Al-1INb at 0.5 cpm and 38° to 650°C
(Strain Ratio = R and Salted = Hot Salt Stress Corrosion Test)
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Figure 172. Load Control TMF Results of Ti-25Al-10Nb-3V-1Mo at 0.5 cpm and 38° to
650°C (Strain Ratio = R)
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Figure 173. Ti-24Al-11Nb Versus Ti-25Al-10Nb-3V-1Mo, Load Control TMF Results (Type
I Cycle, 0.5 cpm, 38° to 650°C, and Strain Ratio = —1.0)
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Figure 174. Load Control TMF Results of Ti-24Al-11Nb for Type I Cycle Versus Type II
Cycle (0.5 cpm, 38° to 650°C, and Strain Ratio = —1.0)
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Figure 175. Effects of HSSC on Ti-24Al-11Nb for Type I Cycle (0.5 cpm, 38° to 650°C,
and Strain Ratio = —1.0)
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Figure 176. Hysteretic Energy Versus Cycles to Failure for Type I Cycle (0.5 cpm, 38° to
650°C, and Strain Ratio Varied)
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Figure 177. Actual Life Versus Predicted Life




] g yduareiog, poul sopIis uonIag AN uco
FULgana ) LUPUOIIS 0N JINL YN T IVEE L e aninnd )SSH o o] KD aan g

w ool wr gy
| O | | E—

. S 1711 930 S¢

5
&
%, 4
A» R ]
S ¢ o
T .
nL
v e . N e
.T,.D i [
ey
. 3 . Ty .
: », )
- - NN
t ' ¢ . . “

194




100um

Figure 179.

‘-
®
’
¢
R G PP

ey .
v A AN e
-, a.

100um

Oxyvgen Embrittlement Laver 'Arrows) After 115 Hours at 630°C (1200°F) n
Ti-24AL-1INb LCF Test. Note Secondary Crecking
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Figure 181. Secundary Crack on Outer Diameter of Gage Section, Ti-24Al-11Nb, LCF.
Structure Revealed by Test Environment, 427°C (800°F) Air. There Seems to
be No Obvious Relationship Between Crack and Microstructure

197




X

T ‘t"i“ i’
) (:f'/".' 5
St gty
axng v

.“.""I‘G""’. Y
RN SR,

.

"’l..,:'

R .
f
¢
.
[
. -
>
’
P .
. -
.
.
3 '
]
.
v

198

100 pum

100um

4AL-T11INF

-2

Boundary Alpha-2 in Ti

rrain

v Concentrations of (

Figure 1382 [Isvlated Heavv €




v

" L S
;'z:i&k

FC 99866
Mag: 500X

100 um

L

FC 99865
Mag: 200X

100 um

ha-2 and Preferential Alignment of Widmanstatten

: P

rrain Boundary Al

Microstructure of Ti-2541-10Nb-3V-1Mo Showing (

Structure Along Prior Beta G

Figure 183

rain Boundary

T




| I— FC 103966

) FC 103967

L
100um (b)

Figure 184. (a) Fractographic Appearance of Preferentially Aligned Widmanstatten
Structure Along Prior Beta Grain Boundary With Probable Grain Boundary
Alpha-2 (b) Enlargement of (a) Showing Cracked Oxide Scale and Sublayer
Beneath for Ti-25Al-10Nb-3V-1Mo
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Figure 185 Pronounced Linear Oxide Crazing and Associated Multiple Secondary Cracks
Perpendicular to Strain Axis on Ti-25Al-10Nb-3V-1Mo Smooth LCF Specimen

Seen in Previous Figure
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Figure 187. Void at Fatigue Origin in Ti-25Al-10Nb-3V-1Mo Smooth LCF Specimen
Tested at 650°C (1200°F)
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Ti-24Al-1INb LCF Origins at Grain Boundary Alpha-2
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Figi.re 192. High Cycle Fatigue (HCF) Origin in 427°C (800°F) Notched Ti-24Al-1INb
Specimen
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Figure 193,

& #,

Subsurface LCEF Origin in Ti-24Al-1INb 650°C (1200°F) Dwell Test. There
Appears to be Fine Porosity Present
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Figure 194, Fatigue Striations on Ti-24Al-11Nb LCF Specimens at 427°C (S00°F. Liofe o
0.17 Hz, R =-1.0; Right 1s R =0, 120 Second Peak Strain Duveil Cyole
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(b) Mag: 15X

Figure 195 Notched LCF Fracture Surface (a) and Notch Appearance (b) at Origin,
Ti-25A1-10Nb-3V-IMo Tested at 650°C (1200°F)
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Figure 196.

100um

Documentativn of Crack Aspect Ratio in Ti-24Al-11Nb 427°C (800°F)
LCF Test
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Figure 197 Prestressed Ti-24A1-1INb Notched LCF 26°C (80°F; Test (N, = 46,524 cvcles).
Photographs Show Material Flaking From Surface and Critical Crack Depth
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Figure 198. Ti-24Al-1INb Notched LCF Origin, 650°C (1200°F). < nusual Texture at Noth

Mayv Be Alpha-2 Platelet

214




\/.‘,\.

AVE A e ) 2T W S sy bl DN ] D) PN Wiy
AT P POIN O N er T e AU IS DD D
PESY WS OSSH YESY g ] St oS aiie ) g paane N g ]
SOCY GNP poibe ) W SULIIIN] Yand ) .::\g:.ﬁ .«\5::3. .Q.Q LY ULiR |

.

215




o Yo — *
P1oA 21q1ssod 10 0'T- = ¥ ‘(4-0081) D059 0 OWI-AE-QNOI-IVSE-LL Ul uiduQ JOH 290jnsqns 008 2ndiy

216




L 1
1mm
‘:%“"" .A“‘"‘.‘AQA

Z

Figure 201  Room Temperature HCF Origin at Surface Connected Prior Beta (frain
Boundary in Ti-24Al-1INb. Edge is Smeared
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Figure 202. Room Temperature HCF Origin in Ti-24Al-11Nh. Streaks are Probably Prior
Beta Grain Boundaries
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Figure 203. Subsurface HCF Origin in Ti-24Al-1INb at 650°C (1200°F)
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Figure 204. Near Surface HCF Origin in Ti-25A1-10Nb-3V-1Mo at 650°C {1200°F) Appears
to he Prior Beta Grain Boundary Junction
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Figure 205. Notched HCF Origin at Atpha Platelet in 427°C (800°F) Ti-24Al-11Nb
Specimen
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Figure 209. Room Temperature 20 Hz Crack Growth Surface of Ti-24Al-1INb at Low and
High Magnifications
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Figure 210. Room Temperature 0.17 Hz Crack Growth Surface of Ti-24Al-11Nb at Low
and High Magnifications
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Figure 211. 427°C (800°F) Crack Growth Surface of Ti-24Al-1INb at 20 H:z
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Figure 212, 427°C (800°F) Crack Growth Surface of Ti-24Al-11Nb at 0.17 Hz
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Low and High Magnifications of 630°C (1200°F) Ti-24Al-11Nb Crack Growth

Surface at 20 Hz

Figure 213.
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Figure 214. Crack Growth Fracture Surface of Ti-24Al-11Nb at 650°C (1200°F) and

0.17 Hz
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Figure 216. Furrowed Crack Propagation Surface on Ti-25Al-10Nb-3V-1Mo Compact
Tension Specimen Tested at Room Temperature and 20 Hz. Feathery Cleavage
Predominates

232




. “-‘ &. . : " . N » P
m?-. Py e SIS “‘-;A’R‘L‘ﬂ"-;‘;
N T e - PR TR - AR :
o e s el W -,
a2 g g e
e : 5 S

Figure 217 Ti-25A1-10Nb-3V-1Mo at 427°C (800°F) Crack Grouth Specimen Exhibits Deep
Furrowing Resulting From Branching Crack Front and Resultant Material
Ejection
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Figure 218.

Ti-25Al-10Nb-3V-1Mo Crack Growth Specimen Tested at 650°C (1200°F) and
0.17 Hz. Extensive Secondary Cracking Results in Exfoliation of Large Pieces
of Material
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Fugure 214 Fracture Faces From TE23ALI0NB-3V-IMo TME Specimens Tope o e
(Ont-uf-Phasej Right v Tspe 1T (In-Phase)
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Figure 220

T-25A0L10Nb-3V -1 My In-Phase TMF Test Shouwing Extensive Oxide Scale
Spating and Rumpling
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Figure 223, Ti-24A1-1INb In-Phase Thermal Mechanical Fatigue Fracture Surfaces
Showing Surface Connected Prior Beta Grain Boundary and Oxygen Diffused
Surface Layer

239




sutS( aovfung adym moys S / L A 1% 2 $22 24nd
L. NnN NiurN\ ’ NN 4

wuw|

240




MIIA BpIS

JS

SH WOl RUNNSaY oamonsy R osvud-o-1i(; 4N TI-IVEG-L]

MIIA doj

-

Cac

AN

241




Figure 226. Hot Salt Stress Corrosion (HSSC) TMF Origin in Ti-24Al-11Nb
{In-Phase Cycle)
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Contour Levels: 0.30 0.70 1.00 1.50 2.00 3.00 4.00 5.00

Figure 228. (110) Pole Figure for Beta Phase of Ti-25Al-10Nb-3V-1Mo Pancake in Radial
Direction
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Contour Levels: 0.30 0.70 1.00 150 200 3.00 4.00 5.00
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Figure 229. (0002) Pole Figure for Alpha-2 Phase of Ti-25A1-10Nb-3V-1Mo Pancake in
Radial Direction
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Figure 230. Relationship of Pancake to Pole Figures
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